Differential Algebra and Related Topics


Book Description

Differential algebra explores properties of solutions of systems of (ordinary or partial, linear or non-linear) differential equations from an algebraic point of view. It includes as special cases algebraic systems as well as differential systems with algebraic constraints. This algebraic theory of Joseph F Ritt and Ellis R Kolchin is further enriched by its interactions with algebraic geometry, Diophantine geometry, differential geometry, model theory, control theory, automatic theorem proving, combinatorics, and difference equations. Differential algebra now plays an important role in computational methods such as symbolic integration and symmetry analysis of differential equations. These proceedings consist of tutorial and survey papers presented at the Second International Workshop on Differential Algebra and Related Topics at Rutgers University, Newark in April 2007. As a sequel to the proceedings of the First International Workshop, this volume covers more related subjects, and provides a modern and introductory treatment to many facets of differential algebra, including surveys of known results, open problems, and new, emerging, directions of research. It is therefore an excellent companion and reference text for graduate students and researchers.




Differential Algebra And Related Topics - Proceedings Of The International Workshop


Book Description

Differential algebra explores properties of solutions to systems of (ordinary or partial, linear or nonlinear) differential equations from an algebraic point of view. It includes as special cases algebraic systems as well as differential systems with algebraic constraints. This algebraic theory of Joseph F Ritt and Ellis R Kolchin is further enriched by its interactions with algebraic geometry, Diophantine geometry, differential geometry, model theory, control theory, automatic theorem proving, combinatorics, and difference equations. Differential algebra now plays an important role in computational methods such as symbolic integration, and symmetry analysis of differential equations. This volume includes tutorial and survey papers presented at workshop.




Asymptotic Differential Algebra and Model Theory of Transseries


Book Description

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.




Trends in Representation Theory of Algebras and Related Topics


Book Description

This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.




Gröbner Bases in Symbolic Analysis


Book Description

This volume contains survey articles and original research papers, presenting the state of the art on applying the symbolic approach of Gröbner bases and related methods to differential and difference equations. The contributions are based on talks delivered at the Special Semester on Gröbner Bases and Related Methods hosted by the Johann Radon Institute of Computational and Applied Mathematics, Linz, Austria, in May 2006.







Ordered Algebraic Structures and Related Topics


Book Description

Contains the proceedings of the international conference "Ordered Algebraic Structures and Related Topics", held in October 2015, at CIRM, Luminy, Marseilles. Papers cover topics in real analytic geometry, real algebra, and real algebraic geometry including complexity issues, model theory of various algebraic and differential structures, Witt equivalence of fields, and the moment problem.







Symmetries and Related Topics in Differential and Difference Equations


Book Description

The papers collected here discuss topics such as Lie symmetries, equivalence transformations and differential invariants, group theoretical methods in linear equations, and the development of some geometrical methods in theoretical physics. The reader will find new results in symmetries of differential and difference equations, applications in classical and quantum mechanics, two fundamental problems of theoretical mechanics, and the mathematical nature of time in Lagrangian mechanics.




Galois Theory of Linear Differential Equations


Book Description

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews