Differential Equations: Methods and Applications


Book Description

This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory.To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included.The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations.




Ordinary Differential Equations with Applications


Book Description

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.




Partial Differential Equations


Book Description

Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently




Differential Equations: An Introduction to Modern Methods and Applications 2e Binder Ready Version + WileyPLUS Registration Card


Book Description

This package includes a three-hole punched, loose-leaf edition of ISBN 9781118011874 and a registration code for the WileyPLUS course associated with the text. Before you purchase, check with your instructor or review your course syllabus to ensure that your instructor requires WileyPLUS. For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include WileyPLUS registration cards. The modern landscape of technology and industry demands an equally modern approach to differential equations in the classroom. Designed for a first course in differential equations, the second edition of Brannan/Boyce's Differential Equations: An Introduction to Modern Methods and Applications is consistent with the way engineers and scientists use mathematics in their daily work. The focus on fundamental skills, careful application of technology, and practice in modeling complex systems prepares students for the realities of the new millennium, providing the building blocks to be successful problem-solvers in today's workplace. The text emphasizes a systems approach to the subject and integrates the use of modern computing technology in the context of contemporary applications from engineering and science. Section exercises throughout the text provide a hands-on experience in modeling, analysis, and computer experimentation. Projects at the end of each chapter provide additional opportunities for students to explore the role played by differential equations in the sciences and engineering.




Applied Theory of Functional Differential Equations


Book Description

This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.




Introduction to Partial Differential Equations with Applications


Book Description

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.




Applications of Symmetry Methods to Partial Differential Equations


Book Description

This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics.




Partial Differential Equations


Book Description

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors




An Introduction To Differential Equations With Applications


Book Description

This book is for students in a first course in ordinary differential equations. The material is organized so that the presentations begin at a reasonably introductory level. Subsequent material is developed from this beginning. As such, readers with little experience can start at a lower level, while those with some experience can use the beginning material as a review, or skip this part to proceed to the next level.The book contains methods of approximation to solutions of various types of differential equations with practical applications, which will serve as a guide to programming so that such differential equations can be solved numerically with the use of a computer. Students who intend to pursue a major in engineering, physical sciences, or mathematics will find this book useful.




Differential Equations and Their Applications


Book Description

For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.