Differential Forms in Electromagnetics


Book Description

An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials.




Multiforms, Dyadics, and Electromagnetic Media


Book Description

This book applies the four-dimensional formalism with an extended toolbox of operation rules, allowing readers to define more general classes of electromagnetic media and to analyze EM waves that can exist in them End-of-chapter exercises Formalism allows readers to find novel classes of media Covers various properties of electromagnetic media in terms of which they can be set in different classes




Theory and Phenomena of Metamaterials


Book Description

Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.




Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves


Book Description

In this book, a wide range of different topics related to analytical as well as numerical solutions of problems related to scattering, propagation, radiation, and emission in different medium are discussed. Design of several devices and their measurements aspects are introduced. Topics related to microwave region as well as Terahertz and quasi-optical region are considered. Bi-isotropic metamaterial in optical region is investigated. Interesting numerical methods in frequency domain and time domain for scattering, radiation, forward as well as reverse problems and microwave imaging are summarized. Therefore, the book will satisfy different tastes for engineers interested for example in microwave engineering, antennas, and numerical methods.




Electromagnetic Scattering


Book Description

Electromagnetic Scattering is a collection of studies that aims to discuss methods, state of the art, applications, and future research in electromagnetic scattering. The book covers topics related to the subject, which includes low-frequency electromagnetic scattering; the uniform asymptomatic theory of electromagnetic edge diffraction; analyses of problems involving high frequency diffraction and imperfect half planes; and multiple scattering of waves by periodic and random distribution. Also covered in this book are topics such as theories of scattering from wire grid and mesh structures; the electromagnetic inverse problem; computational methods for transmission of waves; and developments in the use of complex singularities in the electromagnetic theory. Engineers and physicists who are interested in the study, developments, and applications of electromagnetic scattering will find the text informative and helpful.




Electromagnetic Anisotropy and Bianisotropy


Book Description

The topics of anisotropy and bianisotropy are fundamental to electromagnetics from both theoretical and experimental perspectives. These properties underpin a host of complex and exotic electromagnetic phenomenons in naturally occurring materials and in relativistic scenarios, as well as in artificially produced metamaterials. As a unique guide to this rapidly developing field, the book provides a unified presentation of key classic and recent results on the studies of constitutive relations, spacetime symmetries, planewave propagation, dyadic Green functions, and homogenization of composite materials. This book also offers an up-to-date extension to standard treatments of crystal optics with coverage on both linear and weakly nonlinear regimes.




Formal Structure of Electromagnetics


Book Description

High-level, explicit treatment of the principle of general covariance as applied to electromagnetics examines the natural invariance of the Maxwell equations, general properties of the medium, nonuniformity, anisotropy and general coordinates in three-space, reciprocity and nonreciprocity, and matter-free space with a gravitational field. 1962 edition.




Numerical Electromagnetics


Book Description

Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.




Electromagnetic Metasurfaces


Book Description

Discover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate its material parameters to its physical structures. The authors provide examples to illustrate all the concepts discussed in the book to improve and simplify reader understanding. Electromagnetic Metasurfaces concludes with an incisive discussion of the likely future directions and research opportunities in the field. Readers will also benefit from the inclusion of: A thorough introduction to metamaterials, the concept of metasurfaces, and metasurface precursors An exploration of electromagnetic modeling and theory, including metasurfaces as zero-thickness sheets and bianisotropic susceptibility tensors A practical discussion of susceptibility synthesis, including four-parameters synthesis, more than four-parameters synthesis, and the addition of susceptibility components A concise treatment of scattered-field analysis, including approximate analytical methods, and finite-difference frequency-domain techniques Perfect for researchers in metamaterial sciences and engineers working with microwave, THz, and optical technologies, Electromagnetic Metasurfaces: Theory and Applications will also earn a place in the libraries of graduate and undergraduate students in physics and electrical engineering.




Electromagnetics and Calculation of Fields


Book Description

This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.