Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance


Book Description

Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: Presents new developments and how they relate to established control systems knowledge. Demonstrates the theory through simulation examples and models. Covers two-party and multi-party game theory and guidance. Accompanied by a website hosting MATLAB® code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.




Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance


Book Description

Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: -Presents new developments and how they relate to established control systems knowledge.-Demonstrates the theory through simulation examples and models.-Covers two-party and multi-party game theory and guidance.-Accompanied by a website hosting MATLAB code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.




Differential Games


Book Description

Definitive work draws on game theory, calculus of variations, and control theory to solve an array of problems: military, pursuit and evasion, athletic contests, many more. Detailed examples, formal calculations. 1965 edition.




Application of Differential Dynamic Programming to an Air-to-Air Missile Guidance Problem Modeled as a Differential Game


Book Description

An intercept problem between an air-to-air missile and an aircraft is modeled as a zero sum, free final time differential game which includes nonlinear dynamics and a payoff related to the kill probability. Previous research has shown that the currently used guidance scheme, proportional navigation, is nonoptimal in this type of problem formulation and a higher kill probability is possible with a guidance law based upon a differential game theory. A differential dynamic programming method is applied to the intercept problem in the search for a real-time solution. A convergence control procedure is introduced in an attempt to enhance the convergence of the typically long-time solution methods. The closed-loop guidance law which results is compared to both proportional navigation and some exact open-loop solutions by means of an off-line simulation on a CDC 6600 computer. The method does not yield a real-time solution for this problem and does not give improvement over a proportional navigation scheme. (Author).




Advances in Guidance, Navigation and Control


Book Description

This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.




Adaptive Robust Control Systems


Book Description

This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.




Design of Unmanned Aerial Systems


Book Description

Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots. Provides design steps and procedures for each major component Presents several fully solved, step-by-step examples at component level Includes numerous UAV figures/images to emphasize the application of the concepts Describes real stories that stress the significance of safety in UAV design Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways Features many end-of-chapter problems for readers to practice Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.




Aircraft Systems Classifications


Book Description

Aircraft Systems Classifications Enables aerospace professionals to quickly and accurately reference key information about all types of aircraft systems Aircraft Systems Classifications: A Handbook of Characteristics and Design Guidelines provides comprehensive information on aircraft systems delivered in a concise, direct, and standardized way, allowing readers to easily find the information they need. The book presents a full set of characteristics and requirements for all types of aircraft systems, including avionic, mission, and supporting ground systems, in a single volume. Readers can delve further into specific topics by referencing the detailed glossary and bibliography. To aid in reader comprehension, each aircraft system is broken down according to various criteria, such as: Purpose, description, and safety Integration with other systems Key interfaces and design drivers Modeling and simulation Best practices and future trends Written for aerospace professionals, researchers, and advanced students with some existing knowledge of the aircraft industry, this book allows readers to quickly reference information on every aspect of aircraft systems.




Control of Autonomous Aerial Vehicles


Book Description

Control of Autonomous Aerial Vehicles is an edited book that provides a single-volume snapshot on the state of the art in the field of control theory applied to the design of autonomous unmanned aerial vehicles (UAVs), aka “drones”, employed in a variety of applications. The homogeneous structure allows the reader to transition seamlessly through results in guidance, navigation, and control of UAVs, according to the canonical classification of the main components of a UAV’s autopilot. Each chapter has been written to assist graduate students and practitioners in the fields of aerospace engineering and control theory. The contributing authors duly present detailed literature reviews, conveying their arguments in a systematic way with the help of diagrams, plots, and algorithms. They showcase the applicability of their results by means of flight tests and numerical simulations, the results of which are discussed in detail. Control of Autonomous Aerial Vehicles will interest readers who are researchers, practitioners or graduate students in control theory, autonomous systems or robotics, or in aerospace, mechanical or electrical engineering.




Pursuit-Evasion Differential Games


Book Description

Twenty papers are devoted to the treatment of a wide spectrum of problems in the theory and applications of dynamic games with the emphasis on pursuit-evasion differential games. The problem of capturability is thoroughly investigated, also the problem of noise-corrupted (state) measurements. Attention is given to aerial combat problems and their attendant modelling issues, such as variable speed of the combatants, the three-dimensionality of physical space, and the combat problem, i.e. problems related to 'role determination'.