Differential Geometry of Three Dimensions


Book Description

Originally published in 1930, as the second of a two-part set, this textbook contains a vectorial treatment of geometry.










Differential Geometry of Three Dimensions


Book Description

Originally published in 1927, this systematically organised textbook, primarily aimed at university students, contains a vectorial treatment of geometry.




Analytical Geometry of Three Dimensions


Book Description

Originally published in 1934, this book starts at the subject's beginning, but also engages with profoundly more specialist concepts in the field of geometry.







Differential Geometry


Book Description

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.




Geometry of Surfaces


Book Description

The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.




Differential Geometry In Array Processing


Book Description

In view of the significance of the array manifold in array processing and array communications, the role of differential geometry as an analytical tool cannot be overemphasized. Differential geometry is mainly confined to the investigation of the geometric properties of manifolds in three-dimensional Euclidean space R3 and in real spaces of higher dimension.Extending the theoretical framework to complex spaces, this invaluable book presents a summary of those results of differential geometry which are of practical interest in the study of linear, planar and three-dimensional array geometries.




Introduction to Differential Geometry


Book Description

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.