Differential Geometry and Topology


Book Description

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.




Differential Topology and Geometry with Applications to Physics


Book Description

"Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics." -- Prové de l'editor.




Topology from the Differentiable Viewpoint


Book Description

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.




Differential Topology


Book Description

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.




Differential Topology


Book Description

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS




Manifolds, Sheaves, and Cohomology


Book Description

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.




Introduction to Differential Topology


Book Description

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.




Algebraic and Differential Topology of Robust Stability


Book Description

In this book, two seemingly unrelated fields - algebraic topology and robust control - are brought together. The book develops algebraic/differential topology proceeding from an easily motivated control engineering problem, showing the relevance of advanced topological concepts and reconstructing the fundamental concepts of algebraic/differential topology from an application-oriented point of view. It is suitable for graduate students in engineering and/or applied mathematics, and academic researchers.




Natural Operations in Differential Geometry


Book Description

The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.