Differentiation of Protoplasts and of Transformed Plant Cells


Book Description

H. BINDING and J. REINERT In collaboration with the first authors of this volume This volume is devoted to the development of cell clones and plants from ma nipulated cells: isolated protoplasts, cell fusion bodies, and transformed cells. Isolated protoplasts represent cells which are liberated from their walls and separated from the differentiation pattern of the organism. Investigations on re generation from protoplasts provide a better understanding of the process and control of developmental pathways. Whereas protoplast isolation results in alteration of the state of differentiation of a cell, protoplast fusion is a means for the creation of cells with novel genetic constitution. Fascinating features are (1) to hybridize cells which-unlike gametes -did not derive from meiosis products, (2) to bring together foreign plastids and mitochondria and to investigate their parasexual reactions, and (3) to match ge netic traits which had been separated for long periods of evolution. Highly sophisticated techniques have already been elaborated for the transfer of genes by the use of isolated DNA and gene transfer systems. Highly promising results have already been obtained by the use of Ti plasmids of Agrobacterium, but direct DNA transformation is also proving to be useful. Most of the results in these areas are preliminary and/or limited to a few sys tem.lt is the aim of this volume to present the main features, but at the same time to draw attention to problems and perspectives of protoplast regeneration and so matic cell genetics in order to stimulate further investigations.




Genetic Engineering of Plants


Book Description

"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."




Safety of Genetically Engineered Foods


Book Description

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.




Agrobacterium biology and its application to transgenic plant production


Book Description

The broad host range pathogenic bacterium Agrobacterium tumefaciens has been widely studied as a model system to understand horizontal gene flow, secretion of effector proteins into host cells, and plant-pathogen interactions. Agrobacterium-mediated plant transformation also is the major method for generating transgenic plants for research and biotechnology purposes. Agrobacterium species have the natural ability to conduct interkingdom genetic transfer from bacteria to eukaryotes, including most plant species, yeast, fungi, and even animal cells. In nature, A. tumefaciens causes crown gall disease resulting from expression in plants of auxin and cytokinin biosynthesis genes encoded by the transferred (T-) DNA. Gene transfer from A. tumefaciens to host cells requires virulence (vir) genes that reside on the resident tumor-inducing (Ti) plasmid. In addition to T-DNA, several Virulence (Vir) effector proteins are also translocated to host cells through a bacterial type IV secretion system. These proteins aid in T-DNA trafficking through the host cell cytoplasm, nuclear targeting, and T-DNA integration. Genes within native T-DNAs can be replaced by any gene of interest, making Agrobacterium species important tools for plant research and genetic engineering. In this research topic, we provided updated information on several important areas of Agrobacterium biology and its use for biotechnology purposes.




Transgenic Microalgae as Green Cell Factories


Book Description

Microalgae have been largely commercialized as food and feed additives, and their potential as a source of high-added value compounds is well known. Yet, only a few species of microalgae have been genetically transformed with efficiency. A better understanding of the mechanisms that control the regulation of gene expression in eukaryotes is therefore needed. In this book a group of outstanding researchers working on different areas of microalgae biotechnology offer a global vision of the genetic manipulation of microalgae and their applications.




Biolistic DNA Delivery in Plants


Book Description

This volume details protocols for the use of the biolistic DNA delivery method in different plant species. Chapters guide readers through non-protocol chapters that cover relevant topics of interest, a broad overview of the field, exciting modifications of the system, and reliable plant transformation procedures in different plant species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Biolistic DNA Delivery: Methods and Protocols aims to provide a comprehensive collection of protocols to intended to be a practical guide for the novice as well as the advanced user in the field of plant genetic transformation.




Gene Transfer to Plants


Book Description




Plant Transformation Technologies


Book Description

Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integration of transgenes in plants, many new technologies have been developed. With complete coverage of these technologies, Plant Transformation Technologies provides valuable insight on current and future plant transformation technologies. With twenty-five chapters written by international experts on transformation technologies, the book includes new information on Agrobacterium, targeting transgenes into plant genomes, and new vectors and market systems. Including both review chapters and protocols for transformation, Plant Transformation Technologies is vitally important to graduate students, postdoctoral students, and university and industry researchers.




The Molecular Biology of Plant Cells


Book Description

Plant cell structure and function; Gene expression and its regulation in plant cells; The manipulation of plant cells.




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.