Digital Circuits and Systems


Book Description




Handbook of Digital CMOS Technology, Circuits, and Systems


Book Description

This book provides a comprehensive reference for everything that has to do with digital circuits. The author focuses equally on all levels of abstraction. He tells a bottom-up story from the physics level to the finished product level. The aim is to provide a full account of the experience of designing, fabricating, understanding, and testing a microchip. The content is structured to be very accessible and self-contained, allowing readers with diverse backgrounds to read as much or as little of the book as needed. Beyond a basic foundation of mathematics and physics, the book makes no assumptions about prior knowledge. This allows someone new to the field to read the book from the beginning. It also means that someone using the book as a reference will be able to answer their questions without referring to any external sources.










An Introduction to Logic Circuit Testing


Book Description

An Introduction to Logic Circuit Testing provides a detailed coverage of techniques for test generation and testable design of digital electronic circuits/systems. The material covered in the book should be sufficient for a course, or part of a course, in digital circuit testing for senior-level undergraduate and first-year graduate students in Electrical Engineering and Computer Science. The book will also be a valuable resource for engineers working in the industry. This book has four chapters. Chapter 1 deals with various types of faults that may occur in very large scale integration (VLSI)-based digital circuits. Chapter 2 introduces the major concepts of all test generation techniques such as redundancy, fault coverage, sensitization, and backtracking. Chapter 3 introduces the key concepts of testability, followed by some ad hoc design-for-testability rules that can be used to enhance testability of combinational circuits. Chapter 4 deals with test generation and response evaluation techniques used in BIST (built-in self-test) schemes for VLSI chips. Table of Contents: Introduction / Fault Detection in Logic Circuits / Design for Testability / Built-in Self-Test / References




Foundations of Analog and Digital Electronic Circuits


Book Description

Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems.+Balances circuits theory with practical digital electronics applications.+Illustrates concepts with real devices.+Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach.+Written by two educators well known for their innovative teaching and research and their collaboration with industry.+Focuses on contemporary MOS technology.




Digital Circuits and Systems


Book Description




Analog and Digital Circuits for Electronic Control System Applications


Book Description

Today's control system designers face an ever-increasing "need for speed and accuracy in their system measurements and computations. New design approaches using microcontrollers and DSP are emerging, and designers must understand these new approaches, the tools available, and how best to apply them.This practical text covers the latest techniques in microcontroller-based control system design, making use of the popular MSP430 microcontroller from Texas Instruments.The book covers all the circuits of the system, including:·Sensors and their output signals·Design and application of signal conditioning circuits·A-to-D and D-to-A circuit design·Operation and application of the powerful and popular TI MSP430 microcontroller·Data transmission circuits·System power control circuitryWritten by an experienced microcontroller engineer and textbook author, the book is lavishly illustrated and includes numerous specific circuit design examples, including a fully tested and documented hands-on project using the MSP430 that makes use of the principles described. For students, engineers, technicians, and hobbyists, this practical text provides the answers you need to design modern control systems quickly and easily. - Seasoned Texas Instruments designer provides a ground-up perspective on embedded control systems - Pedagogical style provides a self-learning approach with examples, quizzes and review features




Methodology for the Digital Calibration of Analog Circuits and Systems


Book Description

Methodology for the Digital Calibration of Analog Circuits and Systems shows how to relax the extreme design constraints in analog circuits, allowing the realization of high-precision systems even with low-performance components. A complete methodology is proposed, and three applications are detailed. To start with, an in-depth analysis of existing compensation techniques for analog circuit imperfections is carried out. The M/2+M sub-binary digital-to-analog converter is thoroughly studied, and the use of this very low-area circuit in conjunction with a successive approximations algorithm for digital compensation is described. A complete methodology based on this compensation circuit and algorithm is then proposed. The detection and correction of analog circuit imperfections is studied, and a simulation tool allowing the transparent simulation of analog circuits with automatic compensation blocks is introduced. The first application shows how the sub-binary M/2+M structure can be employed as a conventional digital-to-analog converter if two calibration and radix conversion algorithms are implemented. The second application, a SOI 1T DRAM, is then presented. A digital algorithm chooses a suitable reference value that compensates several circuit imperfections together, from the sense amplifier offset to the dispersion of the memory read currents. The third application is the calibration of the sensitivity of a current measurement microsystem based on a Hall magnetic field sensor. Using a variant of the chopper modulation, the spinning current technique, combined with a second modulation of a reference signal, the sensitivity of the complete system is continuously measured without interrupting normal operation. A thermal drift lower than 50 ppm/°C is achieved, which is 6 to 10 times less than in state-of-the-art implementations. Furthermore, the calibration technique also compensates drifts due to mechanical stresses and ageing.




Low-Power Digital VLSI Design


Book Description

Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.