Digital Modulation Techniques


Book Description

This newly revised and expanded edition of an Artech House classic builds on its success as far and away the most comprehensive guide to digital modulation techniques used in communications today. The second edition adds a wealth of up-to-date, critical material, including: Five new chapters devoted to orthogonal frequency division multiplexing (OFDM) covering its basics and practical implementation issues: peak-to-average power ratio (PAPR) reduction, synchronization, fading channel performance, and mitigation methods, as well as the newest developments such as wavelet OFDM schemes; New modulations for optical communications; Enhanced coverage of M-ary amplitude shift keying (ASK); More accurate bit error rate (BER) equations for quaternary phase shift keying (QPSK) and quadrature amplitude modulation (QAM); Enhanced coverage of fading channel mitigation methods such as channel estimate and diversity techniques; Fast-access comparison of all modulation schemes; New appendixes covering trigonometry identities, Fourier transform pairs and properties, and Q-function and error function values.




Introduction to Digital Mobile Communication


Book Description

Introduces digital mobile communications with an emphasis on digital transmission methods This book presents mathematical analyses of signals, mobile radio channels, and digital modulation methods. The new edition covers the evolution of wireless communications technologies and systems. The major new topics are OFDM (orthogonal frequency domain multiplexing), MIMO (multi-input multi-output) systems, frequency-domain equalization, the turbo codes, LDPC (low density parity check code), ACELP (algebraic code excited linear predictive) voice coding, dynamic scheduling for wireless packet data transmission and nonlinearity compensating digital pre-distorter amplifiers. The new systems using the above mentioned technologies include the second generation evolution systems, the third generation systems with their evolution systems, LTE and LTE-advanced systems, and advanced wireless local area network systems. The second edition of Digital Mobile Communication: Presents basic concepts and applications to a variety of mobile communication systems Discusses current applications of modern digital mobile communication systems Covers the evolution of wireless communications technologies and systems in conjunction with their background The second edition of Digital Mobile Communication is an important textbook for university students, researchers, and engineers involved in wireless communications.




Digital Communications


Book Description

There are eight chapters, useful appendix and solved question papers in the book. Basic digital communication, line codes and sampling methods are presented at the beginning. Digital pulse modulation techniques such as PCM, DPCM, DM, ADM are presented. Continuous wave digital modulation methods such as BPSK, DPSK, QPSK, QAM, BFSK and OOK are presented with mathematical analysis of modulators and receivers. Issues related to baseband transmission such as ISI, Nyquist pulse shaping criterian, optimum reception, matched filter and eye patterns are also discussed. Concepts of information theory such as discrete memoryless channels, mutual information, shannon's theorems on source coding are also presented. Coding using linear block codes, cyclic codes and convolutional coding is also discussed. Secured communication using spread spectrum modulation is also discussed in detail.




Digital Modulations Using Python


Book Description

This paperback is a black & white edition. Link to the color edition: https: //www.amazon.com/dp/1712321633 . A learner-friendly, practical and example driven book, Digital Modulations using Python gives you a solid background in building simulation models for digital modulation systems in Python version 3. This book, an essential guide for understanding the implementation aspects of a digital modulation system, shows how to simulate and model a digital modulation system from scratch. The implemented simulation models shown in this book, provide an opportunity for an engineer to understand the basic implementation aspects of modeling various building blocks of a digital modulation system. It presents the key topics with required theoretical background along with the implementation details in the form of Python scripts. Key topics: ► Basics of signal processing, essential for implementing digital modulation techniques - generation of test signals, interpreting FFT results, power and energy of a signal, methods to compute convolution, analytic signal and applications. ► Waveform and complex baseband equivalent simulation models. ► Digital modulation techniques covered: BPSK and its variants, QPSK and its variants, M-ary PSK, M-ary QAM, M-ary PAM, CPM, MSK, GMSK, M-ary FSK. ► Simulation for ascertaining performance of digital modulation techniques in AWGN and fading channels - Eb/N0 Vs BER curves. ► Design and implementation of linear equalizers - zero forcing and MMSE equalizers, using them in a communication link, LMS algorithm for adaptive equalization. ► Simulation and performance of modulation systems with receiver impairments. ► Examples using object oriented programming. ► Simulation scripts using SciPy, Numpy and Matplotlib packages.




A First Course in Digital Communications


Book Description

A concise introduction to the core concepts in digital communication, providing clarity and depth through examples, problems and MATLAB exercises. Its simple structure maps a logical route to understand the most basic principles in digital communication, and also leads students through more in-depth treatment with examples and step-by step instructions.




Radio Frequency Modulation Made Easy


Book Description

This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.




Digital Modulations Using Matlab


Book Description

This paperback is a color edition. Link to the black & white edition: https: //www.amazon.com/gp/product/152149388X Digital Modulations using Matlab is a learner-friendly, practical and example driven book, that gives you a solid background in building simulation models for digital modulation systems in Matlab. This book, an essential guide for understanding the implementation aspects of a digital modulation system, shows how to simulate and model a digital modulation system from scratch. The implemented simulation models shown in this book, mostly will not use any of the inbuilt communication toolbox functions and hence provide an opportunity for an engineer to understand the basic implementation aspects of modeling various building blocks of a digital modulation system. It presents the following key topics with required theoretical background along with the implementation details in the form of Matlab scripts. * Basics of signal processing essential for implementing digital modulation techniques - generation of test signals, interpreting FFT results, power and energy of a signal, methods to compute convolution, analytic signal and applications. * Waveform and complex equivalent baseband simulation models. * Digital modulation techniques covered: BPSK and its variants, QPSK and its variants, M-ary PSK, M-ary QAM, M-ary PAM, CPM, MSK, GMSK, M-ary FSK. * Monte Carlo simulation for ascertaining performance of digital modulation techniques in AWGN and fading channels - Eb/N0 Vs BER curves. * Design and implementation of linear equalizers - zero forcing and MMSE equalizers, using them in a communication link. * Simulation and performance of modulation systems with receiver impairments.




Space Modulation Techniques


Book Description

Explores the fundamentals required to understand, analyze, and implement space modulation techniques (SMTs) in coherent and non-coherent radio frequency environments This book focuses on the concept of space modulation techniques (SMTs), and covers those emerging high data rate wireless communication techniques. The book discusses the advantages and disadvantages of SMTs along with their performance. A general framework for analyzing the performance of SMTs is provided and used to detail their performance over several generalized fading channels. The book also addresses the transmitter design of these techniques with the optimum number of hardware components and the use of these techniques in cooperative and mm-Wave communications. Beginning with an introduction to the subject and a brief history, Space Modulation Techniques goes on to offer chapters covering MIMO systems like spatial multiplexing and space-time coding. It then looks at channel models, such as Rayleigh, Rician, Nakagami-m, and other generalized distributions. A discussion of SMTs includes techniques like space shift keying (SSK), space-time shift keying (STSK), trellis coded spatial modulation (TCSM), spatial modulation (SM), generalized spatial modulation (GSM), quadrature spatial modulation (QSM), and more. The book also presents a non-coherent design for different SMTs, and a framework for SMTs’ performance analysis in different channel conditions and in the presence of channel imperfections, all that along with an information theoretic treatment of SMTs. Lastly, it provides performance comparisons, results, and MATLAB codes and offers readers practical implementation designs for SMTs. The book also: Provides readers with the expertise of the inventors of space modulation techniques (SMTs) Analyzes error performance, capacity performance, and system complexity. Discusses practical implementation of SMTs and studies SMTs with cooperative and mm-Wave communications Explores and compares MIMO schemes Space Modulation Techniques is an ideal book for professional and academic readers that are active in the field of SMT MIMO systems.




Modulation and Coding Techniques in Wireless Communications


Book Description

The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems




Digital Communication Techniques


Book Description

There have been considerable developments in information and communication technology. This has led to an increase in the number of applications available, as well as an increase in their variability. As such, it has become important to understand and master problems related to establishing radio links, the layout and flow of source data, the power available from antennas, the selectivity and sensitivity of receivers, etc. This book discusses digital modulations, their extensions and environment, as well as a few basic mathematical tools. An understanding of degree level mathematics or its equivalent is a prerequisite to reading this book. Digital Communication Techniques is aimed at licensed professionals, engineers, Masters students and researchers whose field is in related areas such as hardware, phase-locked loops, voltage-controlled oscillators or phase noise.