Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry


Book Description

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ``instructional'' workshop preceding the conference, there were also workshops on ``Commutative Algebra, Algebraic Geometry and Representation Theory'', ``Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ``Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.




Classification and Identification of Lie Algebras


Book Description

The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain classes of nilpotent and solvable Lie algebras of arbitrary finite dimensions for which complete or partial classification exists and discuss in detail their construction and properties. The book is based on material that was previously dispersed in journal articles, many of them written by one or both of the authors together with their collaborators. The reader of this book should be familiar with Lie algebra theory at an introductory level.




Representations of Finite-Dimensional Algebras


Book Description

From the reviews: "... [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette




Representations of Algebraic Groups, Quantum Groups, and Lie Algebras


Book Description

Covers various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. This book outlines connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic.




Numerical Calculations in Clifford Algebra


Book Description

NUMERICAL CALCULATIONS IN CLIFFORD ALGEBRA An intuitive combination of the theory of Clifford algebra with numerous worked and computed examples and calculations Numerical Calculations in Clifford Algebra: A Practical Guide for Engineers and Scientists is an accessible and practical introduction to Clifford algebra, with comprehensive coverage of the theory and calculations. The book offers many worked and computed examples at a variety of levels of complexity and over a range of different applications making extensive use of diagrams to maintain clarity. The author introduces and documents the Clifford Numerical Suite, developed to overcome the limitations of existing computational packages and to enable the rapid creation and deployment of sophisticated and efficient code. Applications of the suite include Fourier transforms for arrays of any types of Clifford numbers and the solution of linear systems in which the coefficients are Clifford numbers of particular types, including scalars, bicomplex numbers, quaternions, Pauli matrices, and extended electromagnetic fields. Readers will find: A thorough introduction to Clifford algebra, with a combination of theory and practical implementation in a range of engineering problems Comprehensive explorations of a variety of worked and computed examples at various levels of complexity Practical discussions of the conceptual and computational tools for solving common engineering problems Detailed documentation on the deployment and application of the Clifford Numerical Suite Perfect for engineers, researchers, and academics with an interest in Clifford algebra, Numerical Calculations in Clifford Algebra: A Practical Guide for Engineers and Scientists will particularly benefit professionals in the areas of antenna design, digital image processing, theoretical physics, and geometry.




Finite Dimensional Algebras and Quantum Groups


Book Description

"The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.




Operator Algebras


Book Description

The theme of the first Abel Symposium was operator algebras in a wide sense. In the last 40 years operator algebras have developed from a rather special discipline within functional analysis to become a central field in mathematics often described as "non-commutative geometry". It has branched out in several sub-disciplines and made contact with other subjects. The contributions to this volume give a state-of-the-art account of some of these sub-disciplines and the variety of topics reflect to some extent how the subject has developed. This is the first volume in a prestigious new book series linked to the Abel prize.




Supersymmetries and Infinite-Dimensional Algebras


Book Description

Recent devopments, particularly in high-energy physics, have projected group theory and symmetry consideration into a central position in theoretical physics. These developments have taken physicists increasingly deeper into the fascinating world of pure mathematics. This work presents important mathematical developments of the last fifteen years in a form that is easy to comprehend and appreciate.




Rings with Polynomial Identities and Finite Dimensional Representations of Algebras


Book Description

A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.