Diophantus and Diophantine Equations


Book Description

This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus—a person whose very existence has long been doubted by most historians of mathematics—will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the Renaissance and in the work of Fermat. This account is continued to our own day and ends with an afterword by Joseph Silverman, who notes the most recent developments including the proof of Fermat's Last Theorem.




Diophantus and Diophantine Equations


Book Description

This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.




An Introduction to Diophantine Equations


Book Description

This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.




Diophantus of Alexandria


Book Description




Quadratic Diophantine Equations


Book Description

This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.




Introduction to Number Theory


Book Description

To Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustra tions, broadcasting, reproductiOli by photocopying machine or similar means, and storage in data banks. Under {sect} 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "VerwertungsgeselIschaft Wort", Munich. © Springer-Verlag Berlin Heidelberg 1982 Softcover reprint of the hardcover 1st edition 1982 Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl. 214113140-5432 I 0 Preface to the English Edition The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points




Greek Mathematical Thought and the Origin of Algebra


Book Description

Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.




The Beginnings and Evolution of Algebra


Book Description

The elements of algebra were known to the ancient mesopotamians at least 4000 years ago. Today, algebra stands as one of the cornerstones of modern mathematics. How then did the subject evolve? An illuminating read for historians of mathematics and working algebraists looking into the history of their subject.




Algebraic Number Theory and Fermat's Last Theorem


Book Description

First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it




Discrete Mathematics


Book Description

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.