Progress in Wall Turbulence: Understanding and Modeling


Book Description

This book will consist of a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES and Low Order Dynamical Systems.







Advances in Turbulence VI


Book Description

Advances in Turbulence VI presents an update on the state of turbulence research with some bias towards research in Europe, since it represents an almost complete collection of the paper presentations at the Sixth European Turbulence Conference, sponsored by EUROMECH, ERCOFTAC and COST, and held at the Swiss Federal Institute of Technology in Lausanne, July 2-5, 1996. The problem of transition, together with the structural description of turbulence, and the scaling laws of fully developed turbulence have continued to receive most attention by the research community and much progress has been made since the last European Turbulence Conference in 1994. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference, as well as anybody who wishes quickly to assess the most active current research areas and the groups associated with them.




Microfluidics and Nanofluidics Handbook, 2 Volume Set


Book Description

A comprehensive, two-volume handbook on Microfluidics and Nanofluidics, this text covers fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications with special emphasis on the energy sector. Each chapter begins with introductory coverage to a subject and then narrows in on advanced techniques and concepts, thus making it valuable to students and practitioners. The author pays special attention to applications of microfluidics in the energy sector and provides insight into the world of opportunities nanotechnology has to offer. Figures, tables, and equations to illustrate concepts.













Computational Methods for Fluid Dynamics


Book Description

This book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.




Direct and Large-Eddy Simulation I


Book Description

It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.