Mathematics of Large Eddy Simulation of Turbulent Flows


Book Description

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field




Multiscale Turbulent Transport


Book Description

Turbulent transport is currently a prominent and ongoing investigation subject at the interface of methodologies from theory to numerical simulations and experiments, and it covers several spatiotemporal scales. Mathematical analysis, physical modelling, and engineering applications represent different facets of a classical, long-standing problem that is still far from being thoroughly comprehended. The goal of this Special Issue is to outline recent advances of such subjects as multiscale analysis in turbulent transport processes, Lagrangian and Eulerian descriptions of turbulence, advection of particles and fields in turbulent flows, ideal or nonideal turbulence (unstationary/inhomogeneous/anisotropic/compressible), turbulent flows in biofluid mechanics and magnetohydrodynamics, and the control and optimization of turbulent transport. The SI is open to regular articles, review papers focused on the state of the art and the progress made over the last few years, and new research trends.




GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0)


Book Description

Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.




Statistical Theory and Modeling for Turbulent Flows


Book Description

Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.




New Results in Numerical and Experimental Fluid Mechanics XI


Book Description

This book gathers contributions to the 20th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book’s primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.




Bubbly Flows


Book Description

The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.




Turbulence in Porous Media


Book Description

Turbulence in Porous Media introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media are present in a number of engineering and natural flows. This new edition features a completely updated text including two new chapters exploring Turbulent Combustion and Moving Porous Media. De Lemos has expertly brought together a text that compiles, details, compares and evaluates available methodologies for modelling and simulating flow, providing an essential tour for engineering students working within the field as well as those working in chemistry, physics, applied mathematics, and geological and environmental sciences. Brings together groundbreaking and complex research on turbulence in porous media Extends the original model to situations including reactive systems Now discusses movement of the porous matrix




New Approaches and Concepts in Turbulence


Book Description

This book contains the proceedings of a colloquium held in Monte Verità from September 9-13, 1991. Special care has been taken to devote adequate space to the scientific discussions, which claimed about half of the time available. Scientists from all over the world presented their views on the importance of kinematic properties, topology and fractal geometry, and on the dynamic behaviour of turbulent flows. They debated the importance of coherent structures and the possibility to incorporate these in the statistical theory of turbulence, as well as their significance for the reduction of the degrees of freedom and the prospective of dynamical systems and chaos approaches to the problem of turbulence. Also under discussion was the relevance of these new approaches to the study of the instability and the origin of turbulence, and the importance of numerical and physical experiments in improving the understanding of turbulence.




CUDA Fortran for Scientists and Engineers


Book Description

CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. To help you add CUDA Fortran to existing Fortran codes, the book explains how to understand the target GPU architecture, identify computationally intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance. All of this is done in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison. Leverage the power of GPU computing with PGI’s CUDA Fortran compiler Gain insights from members of the CUDA Fortran language development team Includes multi-GPU programming in CUDA Fortran, covering both peer-to-peer and message passing interface (MPI) approaches Includes full source code for all the examples and several case studies Download source code and slides from the book's companion website




Direct Numerical Simulations of Gas–Liquid Multiphase Flows


Book Description

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.