Dirichlet-dirichlet Domain Decomposition Methods For Elliptic Problems: H And Hp Finite Element Discretizations


Book Description

Domain decomposition (DD) methods provide powerful tools for constructing parallel numerical solution algorithms for large scale systems of algebraic equations arising from the discretization of partial differential equations. These methods are well-established and belong to a fast developing area. In this volume, the reader will find a brief historical overview, the basic results of the general theory of domain and space decomposition methods as well as the description and analysis of practical DD algorithms for parallel computing. It is typical to find in this volume that most of the presented DD solvers belong to the family of fast algorithms, where each component is efficient with respect to the arithmetical work. Readers will discover new analysis results for both the well-known basic DD solvers and some DD methods recently devised by the authors, e.g., for elliptic problems with varying chaotically piecewise constant orthotropism without restrictions on the finite aspect ratios.The hp finite element discretizations, in particular, by spectral elements of elliptic equations are given significant attention in current research and applications. This volume is the first to feature all components of Dirichlet-Dirichlet-type DD solvers for hp discretizations devised as numerical procedures which result in DD solvers that are almost optimal with respect to the computational work. The most important DD solvers are presented in the matrix/vector form algorithms that are convenient for practical use.




Domain Decomposition


Book Description

Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.




Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations


Book Description

Focuses on the notion that by breaking the domain of the original problem into subdomains, such an approach can, if properly implemented, lead to a considerable speedup. The methods are particularly well suited for parallel computers.




Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations


Book Description

Papers presented at the May 1991 symposium reflect continuing interest in the role of domain decomposition in the effective utilization of parallel systems; applications in fluid mechanics, structures, biology, and design optimization; and maturation of analysis of elliptic equations, with theoretic




Domain Decomposition Methods for Nonconforming Finite Element Discretizations


Book Description

Domain decomposition refers to numerical methods for obtaining solutions of scientific and engineering problems by combining solutions to problems posed on physical subdomains, or, more generally, by combining solutions to appropriately constructed subproblems. It has been a subject of intense interest recently because of its suitability for implementation on high performance computer architectures. It is well known that the nonconforming finite elements are widely used in and effective for the solving of partial differential equations derived from mechanics and engineering, because they have fewer degrees of freedom, simpler basis functions and better convergence behavior. But, there has been no extensive study of domain decomposition methods with nonconforming finite elements which lack the global continuity. Therefore, a rather systematic investigation on domain decomposition methods with nonconforming elements is of great significance and this is what the present book achieves. The theoretical breakthrough is the establishment of a series of essential estimates, especially the extension theorems for nonconforming elements, which play key roles in domain decomposition analysis. There are also many originalities in the design of the domain decomposition algorithms for the nonconforming finite element discretizations, according to the features of the nonconforming elements. The existing domain decomposition methods developed in the conforming finite element discrete case can be revised properly and extended to the nonconforming finite element discrete case correspondingly. These algorithms, nonoverlap or overlap, are as efficient as their counterparts in the conforming cases, and even easier in implementation.




Numerical Analysis


Book Description

This volume is intended to mark the 75th birthday of A R Mitchell, of the University of Dundee. It consists of a collection of articles written by numerical analysts having links with Ron Mitchell, as colleagues, collaborators, former students, or as visitors to Dundee. Ron Mitchell is known for his books and articles contributing to the numerical analysis of partial differential equations; he has also made major contributions to the development of numerical analysis in the UK and abroad, and his many human qualitites are such that he is held in high regard and looked on with great affection by the numerical analysis community. The list of contributors is evidence of the esteem in which he is held, and of the way in which his influence has spread through his former students and fellow workers. In addition to contributions relevant to his own specialist subjects, there are also papers on a wide range of subjects in numerical analysis.




Domain Decomposition Methods - Algorithms and Theory


Book Description

This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.







Mesh Methods for Boundary-Value Problems and Applications


Book Description

This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.




Domain Decomposition Methods in Optimal Control of Partial Differential Equations


Book Description

While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. This monograph emphasizes domain decomposition methods in the context of so-called virtual optimal control problems and treats optimal control problems for partial differential equations and their decompositions using an all-at-once approach.