Discrete Subgroups of Semisimple Lie Groups


Book Description

Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.




Discrete Subgroups of Lie Groups


Book Description

This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.




Discrete, Finite and Lie Groups


Book Description

In a self contained and exhaustive work the author covers Group Theory in its multifaceted aspects, treating its conceptual foundations in a proper logical order. First discrete and finite group theory, that includes the entire chemical-physical field of crystallography is developed self consistently, followed by the structural theory of Lie Algebras with a complete exposition of the roots and Dynkin diagrams lore. A primary on Fibre-Bundles, Connections and Gauge fields, Riemannian Geometry and the theory of Homogeneous Spaces G/H is also included and systematically developed.




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.




Lie Groups


Book Description

This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.




Applications of Lie Groups to Difference Equations


Book Description

Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods




Discrete Groups, Expanding Graphs and Invariant Measures


Book Description

In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan’s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.




Lie Algebras of Finite and Affine Type


Book Description

This book provides a thorough but relaxed mathematical treatment of Lie algebras.




Harmonic Analysis and Representations of Semisimple Lie Groups


Book Description

This book presents the text of the lectures which were given at the NATO Advanced Study Institute on Representations of Lie groups and Harmonic Analysis which was held in Liege from September 5 to September 17, 1977. The general aim of this Summer School was to give a coordinated intro duction to the theory of representations of semisimple Lie groups and to non-commutative harmonic analysis on these groups, together with some glance at physical applications and at the related subject of random walks. As will appear to the reader, the order of the papers - which follows relatively closely the order of the lectures which were actually give- follows a logical pattern. The two first papers are introductory: the one by R. Blattner describes in a very progressive way a path going from standard Fourier analysis on IR" to non-commutative harmonic analysis on a locally compact group; the paper by J. Wolf describes the structure of semisimple Lie groups, the finite-dimensional representations of these groups and introduces basic facts about infinite-dimensional unitary representations. Two of the editors want to thank particularly these two lecturers who were very careful to pave the way for the later lectures. Both these chapters give also very useful guidelines to the relevant literature.




p-Adic Lie Groups


Book Description

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.