Disorder in crystals


Book Description




Disorder in Crystals


Book Description







The Encyclopedia of Mineralogy


Book Description

The Encyclopedia of Mineralogy provides comprehensive, basic treatment of the science of mineralogy. More than 140 articles by internationally known scholars and research workers describe specific areas of mineralogical interest, and a glossary of 3000 entries defines all valid mineral species and many related mineral names. In addition to traditional topics - descriptions of major structural groups, methods of mineral analysis, and the paragenesis of mineral species - this volume embraces such subjects as asbestiform minerals, minerals found in caves and in living beings, and gems and gemology. It includes current data on the latest in our geological inventories - lunar minerals. It describes the properties, characteristics, and uses of industrial resources such as abrasive materials and Portland cement. A directory will guide traveling mineralogists to the major mineralogical museums of the world, with their special interests noted. Clear technical illustrations supplement the text throughout. To help the student and professional find particular information there are a comprehensive subject index, extensive cross-references of related topics (whether in this volume or others in the series), and reference lists to background information and detailed advanced treatment of all topics. The Encyclopedia of Mineralogy is a valuable reference and source for professionals in all geological sciences, for science teachers at all levels, for collectors and `rock hounds', and for all who are curious about the minerals on earth or those brought back from outer space.




Crystals and Crystallinity in Polymers


Book Description

Provides the tools needed to master and apply the fundamentals of polymer crystallography Using core concepts in physics, chemistry, polymer science and engineering, this book sheds new light on the complex field of polymer crystallography, enabling readers to evaluate polymer crystallization data and determine the best methods to use for their investigations. The authors set forth a variety of tested and proven methods for analyzing ordered and disordered structures in polymer crystals, including X-ray diffraction, electron diffraction, and microscopy. In addition to the basics, the book explores several advanced and emerging topics in the field such as symmetry breaking, frustration, and the principle of density-driven phase formation. Crystals and Crystallinity in Polymers introduces two new concepts in crystallinity and crystals in synthetic polymers. First, crystallinity in polymeric materials is compatible with the absence of true three-dimensional long-range order. Second, the disorder may be described as a structural feature, using the methods of X-ray scattering and electron diffraction analysis. The book begins by introducing the basic principles and methods for building structural models for the conformation of polymer crystal chains. Next, it covers: Packing of macromolecules in polymer crystals Methods for extracting structural parameters from diffraction data Defects and disorder in polymer crystals Analytical methods for diffuse scattering from disordered polymer structures Crystal habit Influence of crystal defects and structural disorder on the physical and mechanical properties of polymeric materials Crystals and Crystallinity in Polymers examines all the possible types of structural disorder generally present in polymer crystals and describes the influence of each kind of disorder on X-ray and electron diffraction patterns. Its comprehensive, expert coverage makes it possible for readers to learn and apply the fundamentals of polymer crystallography to solve a broad range of problems.







Crystal Structure Refinement


Book Description

Crystal Structure Refinement is a mixture of textbook and tutorial. As A Crystallographers Guide to SHELXL it covers advanced aspects of practical crystal structure refinement, which have not been much addressed by textbooks so far. After an introduction to SHELXL in the first chapter, a brief survey of crystal structure refinement is provided. Chapters three and higher address the various aspects of structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, to disorder, to non-crystallographic symmetry and twinning. One chapter is dedicated to the refinement of macromolecular structures and two short chapters deal with structure validation (one for small molecule structures and one for macromolecules). In each of the chapters the book gives refinement examples, based on the program SHELXL, describing every problem in detail. It comes with a CD-ROM with all files necessary to reproduce the refinements.




Crystals and Crystallinity in Polymers


Book Description

Provides the tools needed to master and apply the fundamentals of polymer crystallography Using core concepts in physics, chemistry, polymer science and engineering, this book sheds new light on the complex field of polymer crystallography, enabling readers to evaluate polymer crystallization data and determine the best methods to use for their investigations. The authors set forth a variety of tested and proven methods for analyzing ordered and disordered structures in polymer crystals, including X-ray diffraction, electron diffraction, and microscopy. In addition to the basics, the book explores several advanced and emerging topics in the field such as symmetry breaking, frustration, and the principle of density-driven phase formation. Crystals and Crystallinity in Polymers introduces two new concepts in crystallinity and crystals in synthetic polymers. First, crystallinity in polymeric materials is compatible with the absence of true three-dimensional long-range order. Second, the disorder may be described as a structural feature, using the methods of X-ray scattering and electron diffraction analysis. The book begins by introducing the basic principles and methods for building structural models for the conformation of polymer crystal chains. Next, it covers: Packing of macromolecules in polymer crystals Methods for extracting structural parameters from diffraction data Defects and disorder in polymer crystals Analytical methods for diffuse scattering from disordered polymer structures Crystal habit Influence of crystal defects and structural disorder on the physical and mechanical properties of polymeric materials Crystals and Crystallinity in Polymers examines all the possible types of structural disorder generally present in polymer crystals and describes the influence of each kind of disorder on X-ray and electron diffraction patterns. Its comprehensive, expert coverage makes it possible for readers to learn and apply the fundamentals of polymer crystallography to solve a broad range of problems.




Conformational Motion and Disorder in Low and High Molecular Mass Crystals


Book Description

The broad field of conformational motion disorder in crystals is described with particular attention to the separation from the well known mesophases of liquid crystals and plastic crystals. Structure, thermodynamics and motion of a larger number of small and large molecules are discussed. Of special interest are the borderlines between smectic and high viscosity liquid crystals and condis crystals and between plastic crystals and condis crystals as complicated by pseudorotation, jumping between symmetry-related states and hindered rotation. This paper illustrates the wide distribution of conformational disorder in nature. Condis crystals and glasses (Conformational Disorder) can be found in small and large molecule systems made of organic, inorganic and biological compounds. The condis state was newly discovered only four years ago. In this article over 100 examples are discussed as example of the condis state. In many cases the condis state was suggested for the first time. Motion in the Condensed State, Condis Crystals and their Relation to Plastic Crystals, Condis Crystals of Flexible Macromolecules, Condis Crystals and their Relation to Liquid Crystals, Condis Crystals of Stiff Macromolecules.




Disordered Materials


Book Description

This self-contained textbook aims to introduce the physics of structurally disordered condensed systems at the level of advanced undergraduate and graduate students. The topics discussed include the geometry and symmetries of the building blocks commonly used to obtain atomic structures, the various kinds of disorder, the phenomenology and the main theories of the glass transition, investigation of the structure of amorphous systems, the dependence of system structure on its dimensions (clusters), and the case of positional order in the absence of translational order (quasicrystals).