Dispersion Analysis of Nonlinear Periodic Structures


Book Description

The present research is concerned with developing analysis methods for analyzing and exploring finite-amplitude elastic wave propagation through periodic media. Periodic arrangements of materials with high acoustic impedance contrasts can be employed to control wave propagation. These systems are often termed phononic crystals or metamaterials, depending on the specific design and purpose. Design of these systems usually relies on computation and analysis of dispersion band structures which contain information about wave propagation speed and direction. The location and influence of complete (and partial) band gaps is a particularly interesting characteristic. Wave propagation is prohibited for frequencies that correspond to band gaps; thus, periodic systems behave as filters, wave guides, and lenses at certain frequencies. Controlling these behaviors has typically been limited to the manufacturing stage or the application of external stimuli to distort material configurations. The inclusion of nonlinear elements in periodic unit cells offers an option for passive tuning of the dispersion band structure through amplitude-dependence. Hence, dispersion analysis methods which may be utilized in the design of nonlinear phononic crystals and metamaterials are required. The approach taken herein utilizes Bloch wave-based perturbation analysis methods for obtaining closed-form expressions for dispersion amplitude-dependence. The influence of material and geometric nonlinearities on the dispersion relationship is investigated. It is shown that dispersion shifts result from both self-action (monochromatic excitation) and wave-interaction (multi-frequency excitation), the latter enabling dynamic anisotropy in periodic media. A particularly novel aspect of this work is the ease with which band structures of discretized systems may be analyzed. This connection enables topology optimization of unit cells with nonlinear elements. Several important periodic systems are considered including monoatomic lattices, multilayer materials, and plane stress matrix-inclusion configurations. The analysis methods are further developed into a procedure which can be implemented numerically with existing finite-element analysis software for analyzing geometrically-complex materials.




Wave Propagation in Linear and Nonlinear Periodic Media


Book Description

Waves and defect modes in structures media.- Piezoelectric superlattices and shunted periodic arrays as tunable periodic structures and metamaterials.- Topology optimization.- Map-based approaches for periodic structures.- Methodologies for nonlinear periodic media.​ The contributions in this volume present both the theoretical background and an overview of the state-of-the art in wave propagation in linear and nonlinear periodic media in a consistent format. They combine the material issued from a variety of engineering applications, spanning a wide range of length scale, characterized by structures and materials, both man-made and naturally occurring, featuring geometry, micro-structural and/or materials properties that vary periodically in space, including periodically stiffened plates, shells and beam-like as well as bladed disc assemblies, phononic metamaterials, photonic crystals and ordered granular media. Along with linear models and applications, analytical methodologies for analyzing and exploiting complex dynamical phenomena arising in nonlinear periodic systems are also presented.​




Nonlinear Periodic Waves and Their Modulations


Book Description

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.










From Microstructure Investigations to Multiscale Modeling


Book Description

Mechanical behaviors of materials are highly influenced by their architectures and/or microstructures. Hence, progress in material science involves understanding and modeling the link between the microstructure and the material behavior at different scales. This book gathers contributions from eminent researchers in the field of computational and experimental material modeling. It presents advanced experimental techniques to acquire the microstructure features together with dedicated numerical and analytical tools to take into account the randomness of the micro-structure.




Efficient Time-Domain Modeling of Periodic-Structure-Based Microwave and Optical Geometries


Book Description

A set of tools are proposed for the efficient modeling of several classes of problems related to periodic structures in microwave and optical regimes with Finite-Difference Time-Domain method. The first category of problems under study is the interaction of non-periodic sources and printed elements with infinitely periodic structures. Such problems would typically require a time-consuming simulation of a finite number of unit cells of the periodic structures, chosen to be large enough to achieve convergence. To alleviate computational cost, the sine-cosine method for the Finite-Difference Time-Domain based dispersion analysis of periodic structures is extended to incorporate the presence of non-periodic, wideband sources, enabling the fast modeling of driven periodic structures via a small number of low cost simulations. The proposed method is then modified for the accelerated simulation of microwave circuit geometries printed on periodic substrates. The scheme employs periodic boundary conditions applied at the substrate, to dramatically reduce the computational domain and hence, the cost of such simulations. Emphasis is also given on radiation pattern calculation, and the consequences of the truncated computational domain of the proposed method on the computation of the electric and magnetic surface currents invoked in the near-to-far-field transformation. It has been further demonstrated that from the mesh truncation point of view, the scheme, which has a unified form regardless dispersion and conductivity, serves as a much simpler but equally effective alternative to the Perfectly Matched Layer provided that the simulated domain is periodic in the direction of termination. The second category of problems focuses on the efficient characterization of nonlinear periodic structures. In Finite-Difference Time-Domain, the simulation of these problems is typically hindered by the fine spatial and time gridding. Originally proposed for linear structures, the Alternating-Direction Implicit Finite-Difference Time-Domain method, as well as a novel spatial filtering method, are extended to incorporate nonlinear media. Both methods are able to use time-step sizes beyond the conventional stability limit, offering significant savings in simulation time.




Developments and Novel Approaches in Biomechanics and Metamaterials


Book Description

This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019




IUTAM Symposium on Recent Advances of Acoustic Waves in Solids


Book Description

Rapid growth of the mobile communication market has triggered extensive research on the bulk as well as surface acoustic wave devices in the last decade. Quite a few important results on the modeling and simulation of Film Bulk Acoustic Resonator (FBAR) and Layered SAW devices were reported recently. The other recent advance of acoustic waves in solids is the so-called phononic crystals or phononic band-gap materials. Analogous to the band-gap of light in photonic crystals, acoustic waves in periodic elastic structures also exhibit band-gap. Important applications of phononic band gap materials can potentially be found with creating a vibration free environment in microstructures, and design of advanced acoustic frequency filter, etc. In addition to the wave electronics and phononic crystals, to facilitate the emerging needs in the quantitative nondestructive evaluation of materials, waves in anisotropic solids and/or electro-, magneto- interaction problems also regained much attention recently. Topics treated include: Waves in piezoelectric crystals; Simulation of advanced BAW and SAW devices; Analysis of band gaps in phononic structures; Experimental investigation of phononic structures; Waves in multilayered media;Waves in anisotropic solids and/or electro-, magneto- interaction problems.




Analysis of Bloch Formalism in Undamped and Damped Periodic Structures


Book Description

Bloch analysis was originally developed by Felix Bloch to solve Schrödinger's equation for the electron wave function in a periodic potential field, such as that found in a pristine crystalline solid. His method has since been adapted to study elastic wave propagation in periodic structures. The absence of a rigorous mathematical analysis of the approach, as applied to periodic structures, has resulted in mistreatment of internal forces and misapplication to nonlinear media. In this thesis, we detail a mathematical basis for Bloch analysis and thereby shed important light on the proper application of the technique. We show conclusively that translational invariance is not a proper justification for invoking the existence of a "propagation constant," and that in nonlinear media this results in a flawed analysis. Next, we propose a general framework for applying Bloch analysis in damped systems and investigate the effect of damping on dispersion curves. In the context of Schrödinger's equation, damping is absent and energy is conserved. In the damped setting, application of Bloch analysis is not straight-forward and requires additional considerations in order to obtain valid results. Results are presented in which the approach is applied to example structures. These results reveal that damping may introduce wavenumber band gaps and bending of dispersion curves such that two or more temporal frequencies exist for each dispersion curve and wavenumber. We close the thesis by deriving conditions which predict the number of wavevectors at each frequency in a dispersion relation. This has important implications for the number of nearest neighbor interactions that must be included in a model in order to obtain dispersion predictions which match experiment.