Dispersion Decay and Scattering Theory


Book Description

A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.




Lectures in Scattering Theory


Book Description

Lectures in Scattering Theory discusses problems in quantum mechanics and the principles of the non-relativistic theory of potential scattering. This book describes in detail the properties of the scattering matrix and its connection with physically observable quantities. This text presents a stationary formulation of the scattering problem and the wave functions of a particle found in an external field. This book also examines the analytic properties of the scattering matrix, dispersion relations, complex angular moments, as well as the separable representation of the scattering amplitude. The text also explains the method of factorizing the potential and the two-particle scattering amplitude, based on the Hilbert-Schmidt theorem for symmetric integral equations. In investigating the problem of scattering in a three-particle system, this book notes that the inapplicability of the Lippman-Schwinger equations can be fixed by appropriately re-arranging the equations. Faddeev equations are the new equations formed after such re-arrangements. This book also cites, as an example, the scattering of a spin-1/2 particle by a spinless particle (such as the scattering of a nucleon by a spinless nucleus). This text is suitable for students and professors dealing with quantum mechanics, theoretical nuclear physics, or other fields of advanced physics.




Scattering Theory


Book Description

This book is based on the course in theoretical nuclear physics that has been given by the author for some years at the T. G. Shevchenko Kiev State University. This version is supplemented and revised to include new results obtained after 1971 and 1975 when the first and second editions were published. This text is intended as an introduction to the nonrelativistic theory of po tential scattering. The analysis is based on the scattering matrix concept where the relationship between the scattering matrix and observable physical quantities is considered. The stationary formulation of the scattering problem is presented; particle wave functions in the external field are obtained. A formulation of the optical theorem is given as well as a discussion on time inversion and the reci procity theorem. Analytic properties of the scattering matrix, dispersion relations, and complex moments are analyzed. The dispersion relations for an arbitrary di rection scattering amplitude are proven, and analytic properties of the amplitude in the plane of the complex cosine of the scattering angle are studied in detail.




Scattering Theory


Book Description

This graduate-level text, intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering, emphasizes the time-dependent approach. 1983 edition.




Scattering Theory: Some Old and New Problems


Book Description

Scattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, such as asymptotic completeness for the Schrödinger operator with long-range and multiparticle potentials, as well as open problems, are discussed. Potentials for which asymptotic completeness is violated are also constructed. This corresponds to a new class of asymptotic solutions of the time-dependent Schrödinger equation. Special attention is paid to the properties of the scattering matrix, which is the main observable of the theory. The book is addressed to readers interested in a deeper study of the subject.




Three-particle Physics And Dispersion Relation Theory


Book Description

The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.




Scattering Theory of Waves and Particles


Book Description

This volume crosses the boundaries of physics' traditional subdivisions to treat scattering theory within the context of classical electromagnetic radiation, classical particle mechanics, and quantum mechanics. Includes updates on developments in three-particle collisions, scattering by noncentral potentials, and inverse scattering problems. 1982 edition.










Scattering Theory


Book Description