Distributed Coordination of Multi-agent Networks


Book Description

Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders.




A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence


Book Description

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.




Introduction to Hybrid Intelligent Networks


Book Description

This book covers the fundamental principles, new theories and methodologies, and potential applications of hybrid intelligent networks. Chapters focus on hybrid neural networks and networked multi-agent networks, including their communication, control and optimization synthesis. This text also provides a succinct but useful guideline for designing neural network-based hybrid artificial intelligence for brain-inspired computation systems and applications in the Internet of Things. Artificial Intelligence has developed into a deep research field targeting robots with more brain-inspired perception, learning, decision-making abilities, etc. This text devoted to a tutorial on hybrid intelligent networks that have been identified in nature and engineering, especially in the brain, modeled by hybrid dynamical systems and complex networks, and have shown potential application to brain-inspired intelligence. Included in this text are impulsive neural networks, neurodynamics, multiagent networks, hybrid dynamics analysis, collective dynamics, as well as hybrid communication, control and optimization methods. Graduate students who are interested in artificial intelligence and hybrid intelligence, as well as professors and graduate students who are interested in neural networks and multiagent networks will find this textbook a valuable resource. AI engineers and consultants who are working in wireless communications and networking will want to buy this book. Also, professional and academic institutions in universities and Mobile vehicle companies and engineers and managers who concern humans in the loop of IoT will also be interested in this book.




Distributed Consensus in Multi-vehicle Cooperative Control


Book Description

Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.




Emergent Behavior Detection and Task Coordination for Multiagent Systems


Book Description

This book addresses problems in the modeling, detection, and control of emergent behaviors and task coordination in multiagent systems. It presents a unified solution to such problems in terms of distributed estimation, distributed control, and optimization of interaction topologies and dynamics. Four aspects of the technical solutions in the book are presented: First, the impact of interaction dynamics on the convergence conditions related to interaction topologies is discussed, utilizing a discontinuous cooperative control algorithm of updated design. Second, distributed least-squares and Kalman filtering algorithms for agents with limited interactions are elaborated upon. Third, a general framework of distributed nonlinear control is established, and distributed adaptive control for nonlinear systems with more general uncertainties is presented. Based on the proposed framework, a distributed nonlinear controller is designed to deal with task coordination of robotic systems with nonholonomic constraints. Finally, the problem of optimal multiagent task coordination is addressed and solutions based on approximate dynamic programming and approximate distributed gradient estimation are presented. Emergent Behavior Detection and Task Coordination for Multiagent Systems is of interest to practicing engineers in areas such as robotics and cyber-physical systems, researchers in the field of systems, controls, and robotics, and senior undergraduate and graduate students.




Distributed Average Tracking in Multi-agent Systems


Book Description

This book presents a systematic study of an emerging field in the development of multi-agent systems. In a wide spectrum of applications, it is now common to see that multiple agents work cooperatively to accomplish a complex task. The book assists the implementation of such applications by promoting the ability of multi-agent systems to track — using local communication only — the mean value of signals of interest, even when these change rapidly with time and when no individual agent has direct access to the average signal across the whole team; for example, when a better estimation/control performance of multi-robot systems has to be guaranteed, it is desirable for each robot to compute or track the averaged changing measurements of all the robots at any time by communicating with only local neighboring robots. The book covers three factors in successful distributed average tracking: algorithm design via nonsmooth and extended PI control; distributed average tracking for double-integrator, general-linear, Euler–Lagrange, and input-saturated dynamics; and applications in dynamic region-following formation control and distributed convex optimization. The book presents both the theory and applications in a general but self-contained manner, making it easy to follow for newcomers to the topic. The content presented fosters research advances in distributed average tracking and inspires future research directions in the field in academia and industry.




Estimation and Control of Large-Scale Networked Systems


Book Description

Estimation and Control of Large Scale Networked Systems is the first book that systematically summarizes results on large-scale networked systems. In addition, the book also summarizes the most recent results on structure identification of a networked system, attack identification and prevention. Readers will find the necessary mathematical knowledge for studying large-scale networked systems, as well as a systematic description of the current status of this field, the features of these systems, difficulties in dealing with state estimation and controller design, and major achievements. Numerical examples in chapters provide strong application backgrounds and/or are abstracted from actual engineering problems, such as gene regulation networks and electricity power systems. This book is an ideal resource for researchers in the field of systems and control engineering. - Provides necessary mathematical knowledge for studying large scale networked systems - Introduces new features for filter and control design of networked control systems - Summarizes the most recent results on structural identification of a networked system, attack identification and prevention




Cooperative Control of Multi-Agent Systems


Book Description

Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.




Control Design of Multiagent Discrete-Time Systems


Book Description

This book describes an effective approach to the cooperative and coordinated control of multivehicle systems. This rigorous analytic approach guarantees the stability of coordinated and cooperating vehicles using distributed protocols and uses low-energy, event-triggered mechanisms for networked vehicle control. The text covers: design of a cooperative protocol to achieve consensus for multivehicle systems, allowing cooperation that is resistant to the effects of packet loss and/or adversarial attack; analysis and synthesis of an event-triggering mechanism for cooperative multivehicle systems over uncertain networks; and the problem of distributed leader-following consensus and methods for compelling multivehicle systems to reach consensus. Throughout the book, cooperation problems are transformed into stability problems. Lyapunov theory is used to guarantee cooperation among agents. The distributed approach is applied to triggering mechanisms, the cooperation process, and the impact of cyber-attacks. Discrete-time analysis shows how the event-based structure can be designed to match the performance of continuous-time counterparts. The book details applications and computer simulation with several practical examples. This book is of interest to a wide audience from the graduate student, through the academic researcher to the industrial practitioner, all of them sharing a common interest in the stability and security of multiagent systems.