Distributed Energy Resources in Local Integrated Energy Systems


Book Description

Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning reviews research and policy developments surrounding the optimal operation and planning of DER in the context of local integrated energy systems in the presence of multiple energy carriers, vectors and multi-objective requirements. This assessment is carried out by analyzing impacts and benefits at local levels, and in distribution networks and larger systems. These frameworks represent valid tools to provide support in the decision-making process for DER operation and planning. Uncertainties of RES generation and loads in optimal DER scheduling are addressed, along with energy trading and blockchain technologies. Interactions among various energy carriers in local energy systems are investigated in scalable and flexible optimization models for adaptation to a number of real contexts thanks to the wide variety of generation, conversion and storage technologies considered, the exploitation of demand side flexibility, emerging technologies, and through the general mathematical formulations established. - Integrates multi-energy DER, including electrical and thermal distributed generation, demand response, electric vehicles, storage and RES in the context of local integrated energy systems - Fosters the integration of DER in the electricity markets through the concepts of DER aggregation - Addresses the challenges of emerging paradigms as energy communities and energy blockchain applications in the current and future energy landscape - Proposes operation optimization models and methods through multi-objective approaches for fostering short- and long-run sustainability of local energy systems - Assesses and models the uncertainties of renewable resources and intermittent loads in the short-term decision-making process for smart decentralized energy systems




Distributed Energy Resources in Microgrids


Book Description

Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization unifies classically unconnected aspects of microgrids by considering them alongside economic analysis and stability testing. In addition, the book presents well-founded mathematical analyses on how to technically and economically optimize microgrids via distributed energy resource integration. Researchers and engineers in the power and energy sector will find this information useful for combined scientific and economical approaches to microgrid integration. Specific sections cover microgrid performance, including key technical elements, such as control design, stability analysis, power quality, reliability and resiliency in microgrid operation. - Addresses the challenges related to the integration of renewable energy resources - Includes examples of control algorithms adopted during integration - Presents detailed methods of optimization to enhance successful integration




Energy Storage for Modern Power System Operations


Book Description

ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage




Technologies for Integrated Energy Systems and Networks


Book Description

Technologies for Integrated Energy Systems and Networks Explore emerging technologies that will play a central role in humanity’s transition to a low-carbon future In Technologies for Integrated Energy Systems and Networks, a team of distinguished authors delivers a detailed discussion of integrated energy systems and networks, including a comprehensive overview of emerging technologies. The book focuses on the technologies and systems that play a major role in integrated energy systems, like renewable and distributed energy resources, power conversion technologies, hydrogen, storage technologies, electric mobility, zero- and positive-energy buildings, and local energy communities. A one-of-a-kind and holistic treatment of integrated energy systems, this book explores power conversion, including power-to-gas, power-to-liquid, and power- to-heat technologies, as well as other issues of interest to a broad range of students, professionals, and academicians involved in energy transition. It also covers: A thorough introduction to the digitalization of the energy sector and local market development enabling citizen involvement Comprehensive explorations of integrated energy systems as an engine of energy transition Practical discussions of renewable and distributed energy resources for sustainable economic development In-depth examinations of the role of hydrogen in a low-carbon energy future and the storage technologies of different energy carriers Perfect for electrical, construction, power and energy engineers, Technologies for Integrated Energy Systems and Networks will also earn a place in the libraries of electrochemists and environmental consultants.




Integration of Distributed Energy Resources in Power Systems


Book Description

Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control covers the operation of power transmission and distribution systems and their growing difficulty as the share of renewable energy sources in the world's energy mix grows and the proliferation trend of small scale power generation becomes a reality. The book gives students at the graduate level, as well as researchers and power engineering professionals, an understanding of the key issues necessary for the development of such strategies. It explores the most relevant topics, with a special focus on transmission and distribution areas. Subjects such as voltage control, AC and DC microgrids, and power electronics are explored in detail for all sources, while not neglecting the specific challenges posed by the most used variable renewable energy sources. - Presents the most relevant aspects of the integration of distributed energy into power systems, with special focus on the challenges for transmission and distribution - Explores the state-of the-art in applications of the most current technology, giving readers a clear roadmap - Deals with the technical and economic features of distributed energy resources and discusses their business models




Renewable Energy Systems


Book Description

In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. - Provides an introduction to the technical design of renewable energy systems - Demonstrates how to analyze the feasibility and efficiency of large-scale systems to help implementers avoid costly trial and error - Addresses the socio-political challenge of implementing the shift to renewables - Features a dozen extensive case studies from around the globe that provide real-world templates for new installations




Climate Impacts on Energy Systems


Book Description

"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible."




Integrated Local Energy Communities


Book Description

Introducing a framework for obtaining and maintaining renewable energy security at the local community level Local energy communities are a framework for assembling and coordinating major stakeholders, individual, corporate, and institutional, in the pursuit of long-term renewable energy and carbon-free projects in a given area. They are aimed at community benefits rather than profit, and have become an invaluable tool in the fight to reimagine the global energy grid, one community at a time. With climate change making this fight ever more urgent, integrated local energy communities (ILECs) that enhance the previous concept through a multi-carrier systems’ approach have never been a more important social force. Integrated Local Energy Communities offers a framework for designing, planning, and operating communities from end to end. Incorporating regulatory and policy issues, the mechanics of local multi-carrier energy systems, social aspects and more, it provides viable solutions to one of the most urgent energy challenges of our time. The result is an indispensable contribution to a potentially transformative process. Integrated Local Energy Communities readers will also find: Comprehensive coverage of all types of energy conversion technologies and processes Analysis of the entire value chain, from concepts to planning and operation Discussion of all key factors for integrating the ILEC energy paradigm Integrated Local Energy Communities is ideal for energy engineers, electrical engineers, mechanical engineers, engineering scientists working in consultancy and industry, as well as the libraries that serve them.




Handbook on Battery Energy Storage System


Book Description

This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.




Blockchain-Based Smart Grids


Book Description

Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system and looks to future developments in the use of blockchain technology in the energy market. Rapid growth of renewable energy resources in power systems and significant developments in the telecommunication systems has resulted in new market designs being employed to cover unpredictable and distributed generation of electricity. This book considers the marriage of blockchain and grid modernization, and discusses the transaction shifts in smart grids, from centralized to peer-to-peer structures. In addition, it addresses the effective application of these structures to speed up processes, resulting in more flexible electricity systems. Aimed at moving towards blockchain-based smart grids with renewable applications, this book is useful to researchers and practitioners in all sectors of smart grids, including renewable energy providers, manufacturers and professionals involved in electricity generation from renewable sources, grid modernization and smart grid applications.