Diverse Topics in Theoretical and Mathematical Physics


Book Description

In this volume, topics are drawn from field theory, especially gauge field theory, as applied to particle, condensed matter and gravitational physics, and concern a variety of interesting subjects. These include geometricalDtopological effects in quantum theory, fractional charge, time travel, relativistic quantized fields in and out of thermal equilibrium and quantum modifications of symmetry in physical systems.Many readers will find this a useful volume, especially theoretical physicists and mathematicians. The material will be of interest to both the expert who will find well-presented novel and stimulating viewpoints of various subjects and the novice who will find complete, detailed and precise descriptions of important topics of current interest, in theoretical and mathematical physics.




Mathematical Physics


Book Description

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.




Mathematical Physics


Book Description

Useful treatment of classical mechanics, electromagnetic theory, and relativity includes explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, other advanced mathematical techniques. Nearly 200 problems with answers.




Physics for Mathematicians


Book Description




Topics in Contemporary Mathematical Physics


Book Description

This textbook, pitched at the advanced-undergraduate to beginning-graduate level, focuses on mathematical topics of relevance in contemporary physics that are not usually covered in texts at the same level. Its main purpose is to help students appreciate and take advantage of the modern trend of very productive symbiosis between physics and mathematics. Three major areas are covered: (1) linear operators; (2) group representations and Lie algebra representations; and (3) topology and differential geometry. The features of this work include: an exposition style which is a fusion of those common in the standard physics and mathematics literatures; a level of exposition that varies from quite elementary to moderately advanced, so that the text should be of interest to a wide audience; a strong degree of thematic unity, despite the diversity of the topics covered; and cross references, so that, from any part of the book, the reader can trace easily where specific concepts or techniques are introduced.




Explorations in Mathematical Physics


Book Description

Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.




Theoretical Physics


Book Description

Classic treatise covers mathematical topics needed by theoretical and experimental physicists (vector analysis, calculus of variations, etc.), followed by coverage of mechanics, electromagnetic theory, thermodynamics, quantum mechanics, and nuclear physics.




Topics in Quantum Mechanics


Book Description

This self-contained text presents quantum mechanics from the point of view of some computational examples with a mixture of mathematical clarity often not found in texts offering only a purely physical point of view. Emphasis is placed on the systematic application of the Nikiforov-- Uvarov theory of generalized hypergeometric differential equations to solve the Schr"dinger equation and to obtain the quantization of energies from a single unified point of view.




Quantum Field Theory in Condensed Matter Physics


Book Description

This is an approachable introduction to the important topics and recent developments in the field of condensed matter physics. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.




Mathematics of Classical and Quantum Physics


Book Description

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.