Drosophila Genetics


Book Description

The Biological Sciences are in the midst of a scientific rev olution. During the past decade under the rubric of molecu lar biology, chemistry and physics have assumed an integral role in biological research. This is especially true in ge netics, where the cloning of genes and the manipulation of genomic DNA have become in many organisms routine laboratory procedures. These noteworthy advances, it must be empha sized, especially in molecular genetics, are not autonomous. Rather, they have been accomplished with those organisms whose formal genetics has been documented in great detail. For the beginning student or the established investigator who is interested in pursuing eukaryote molecular genetic re search, Drosophila melanogaster, with its rich body of formal genetic information is one organism of choice. The book "Drosophila Genetics. A Practical Course" is an indispens able source of information for the beginner in the biology and formal genetics of Drosophila melanogaster. The scope of this guide, a revision and enlargement of the original German language version, is broad and instructive. The information included ranges from the simple, but necessary, details on how to culture and manipulate Drosophila flies to a series of more sophisticated genetic experiments. After completing the experiments detailed in the text, all students - neophyte or experienced - will be richly rewarded by having acquired a broad base of classical genetics information relevant for the biologist in its own right and prerequisite to Drosophila genetics research - formal and/or molecular. Davis, California, Melvin M.




Lords of the Fly


Book Description

"One of the most productive of all laboratory animals, Drosophila has been a key tool in genetics research for nearly a century. At the center of Drosophila culture from 1910 to 1940 was the school of Thomas Hunt Morgan and his students Alfred Sturtevant and Calvin Bridges, who, by inbreeding fruit flies, created a model laboratory creature - the 'standard' fly. By examining the material culture and working customs of Morgan's research group, [the author] brings to light essential features of the practice of experimental science. [This book] takes a broad view of experimental work, ranging from how the fly was introducted into the laboratory and how it was physically redesigned for use in genetic mapping, to how the 'Drosophilists' organized an international network for exchanging fly stocks that spread their practices around the world"--Back cover.




The Genetics of Drosophila


Book Description




Behavioral Genetics of the Fly (Drosophila Melanogaster)


Book Description

A comprehensive portrayal of the behaviour genetics of the fruit fly (Drosophila melanogaster) and the methods used in these studies.




The Genome of Drosophila Melanogaster


Book Description

Dedicated to the memory of George Lefevre in recognition of his exhaustive cytogenetic analysis of the X chromosome, The Genome of Drosophila melanogaster is the complete compendium of what is known about the genes and chromosomes of this widely used model organism. The volume is an up-to-date revision of Lindsley and Grell's 1968 work, Genetic Variations of Drosophila melanogaster. The new edition contains complete descriptions of normal and mutant genes including phenotypic, cytological, molecular, and bibliographic information. In addition, it describes thousands of recorded chromosome rearrangements used in research on Drosophila. This handbook and its accompanying polytene chromosome maps, are sturdily bound into the book as foldouts and available as a separate set, are essential research tools for the Drosophila community. Describes phenotype, cytology, and molecular biology of all recorded genes of Drosophila melanogaster, plus references to the literature Describes normal chromosome complement, special chromosome constructs, transposable elements, departures from diploidy, satellite sequences, and nonchromosomal inheritance Describes all recorded chromosome rearrangements of Drosophila melanogaster as of the end of 1989 Contains the cytogenetic map of all genes as of mid-1991 Contains the original polytene maps of C.B. Bridges, plus G. Lefevre's photographic equivalents, and the detailed maps of the chromosome arms produced by C.B. and P.M. Bridges All maps are reprinted as high-quality foldouts sturdily bound into the volume Maps may also be purchased separately in an eight-map packet, for laboratory and student use




Fly Pushing


Book Description

A second edition of the classic handbook has become a standard in the Drosophila field. This edition is expanded to include topics in which classical genetic strategies have been augmented with new molecular tools. Included are such new techniques as homologous recombination, RNAi, new mapping techniques, and new mosaic marking techniques.




Vision in Drosophila


Book Description




Behavioral Genetics of the Fly (Drosophila Melanogaster)


Book Description

The common fruit fly - Drosophila melanogaster - has been the subject of genetics research since the early twentieth century. The complete genomic sequence of Drosophila was published in 2000 and it is still the model organism par excellence for the experimental study of biological phenomena and processes. It is also by far the best model for studying gene function in mammals, including humans. Presenting state-of-the-art studies on the behaviour of Drosophila, this volume discusses normal and pathological models of neurobehavioral disorders and encompasses the specialised methods that have been used, from anatomical, histological, immunohistological and neurophysiological to genomic, genetic and behavioural assays. A comprehensive and thorough reference, this volume is a valuable resource for students and researchers alike across several disciplines of life sciences, including behavioral genetics, neurogenetics, behavioral neuroscience, molecular biology, evolutionary biology and population biology.




Development and Neurobiology of Drosophila


Book Description

There is no multicellular animal whose genetics is so well understood as Drosophila melanogaster. An increasing number of biologists have, therefore, turned to the fruitfly in pursuit of such diverse areas as the molecular biology of eukaryotic cells, development and neurobiology. Indeed there are signs that Dro sophila may soon become the most central organism in biqlogy for genetic analysis of complex problems. The papers in this collection were presented at a conference on Development and Behavior of Drosophila held at the Tata Insti tute of Fundamental Research from 19th to 22nd December, 1979. The volume reflects the commonly shared belief of the participants that Drosophila has as much to contribute to biology in the future as it has in the past. We hope it will be of interest not merely to Dro sophilists but to all biologists. We thank Chetan Premani, Anil Gupta, K.S. Krishnan, Veronica Rodrigues, Hemant Chikermane and K. Vijay Raghavan for help with recording and transcription of the proceedings and Vrinda Nabar and K.V. Hareesh for editorial assistance. We thank Samuel Richman, Thomas Schmidt-Glenewinkel and T.R. Venkatesh for their valuable assistance in proofreading the manuscripts, and we also thank Patricia Rank for her excellent effort in the preparation of the final manuscripts. The conference was supported by a grant from Sir Dorabji Tata Trust.




First in Fly


Book Description

A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila’s importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these “first in fly” findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.