Structural Connections for Precast Concrete Buildings


Book Description

Connections are among the most essential parts in precast structures. Their performance relates to the structural limit states, as well as to manufacture of the precast elements and erection and maintenance of the structure itself. Proper design of connections is one major key to a successful prefabrication. The principal aim of fib Bulletin 43 is to encourage good practice in the design of structural connections in precast concrete structures. This is achieved through a good understanding of structural connections as parts of the overall structural system and of basic force transferring mechanisms. The bulletin consists of two parts; the first part concerns general considerations and philosophy in the design of structural connections, and the second part deals with basic force transferring mechanisms within structural connections. The main focus is on the design of structural connections with regard to their structural function in ordinary design situations in the serviceability and ultimate limit states, and in accidental/abnormal design situations, like fire, lack of fit and impact/accidental loads. Other aspects considered include production, handling and site erection of elements, building physics, durability and maintenance. Bulletin 43 applies to structural connections for precast concrete buildings, although the information on basic force transfer mechanisms can also be applicable to other types of prefabricated structures.







Multi-Storey Precast Concrete Framed Structures


Book Description

Precast reinforced and prestressed concrete frames provide a high strength, stable, durable and robust solution for any multi-storey structure, and are widely regarded as a high quality, economic and architecturally versatile technology for the construction of multi-storey buildings. The resulting buildings satisfy a wide range of commercial and industrial needs. Precast concrete buildings behave in a different way to those where the concrete is cast in-situ, with the components subject to different forces and movements. These factors are explored in detail in the second edition of Multi-Storey Precast Concrete Framed Structures, providing a detailed understanding of the procedures involved in precast structural design. This new edition has been fully updated to reflect recent developments, and includes many structural calculations based on EUROCODE standards. These are shown in parallel with similar calculations based on British Standards to ensure the designer is fully aware of the differences required in designing to EUROCODE standards. Civil and structural engineers as well as final year undergraduate and postgraduate students of civil and structural engineering will all find this book to be thorough overview of this important construction technology.




Design of multi-storey precast concrete structures


Book Description







Precast Concrete Structures


Book Description

This second edition of Precast Concrete Structures introduces the conceptual design ideas for the prefabrication of concrete structures and presents a number of worked examples that translate designs from BS 8110 to Eurocode EC2, before going into the detail of the design, manufacture, and construction of precast concrete multi-storey buildings. Detailed structural analysis of precast concrete and its use is provided and some details are presented of recent precast skeletal frames of up to forty storeys. The theory is supported by numerous worked examples to Eurocodes and European Product Standards for precast reinforced and prestressed concrete elements, composite construction, joints and connections and frame stability, together with extensive specifications for precast concrete structures. The book is extensively illustrated with over 500 photographs and line drawings.




Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems


Book Description

Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems comprises 330 papers that were presented at the Eighth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022, Cape Town, South Africa, 5-7 September 2022). The topics featured may be clustered into six broad categories that span the themes of mechanics, modelling and engineering design: (i) mechanics of materials (elasticity, plasticity, porous media, fracture, fatigue, damage, delamination, viscosity, creep, shrinkage, etc); (ii) mechanics of structures (dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) numerical modelling and experimental testing (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber); (v) innovative concepts, sustainable engineering and special structures (nanostructures, adaptive structures, smart structures, composite structures, glass structures, bio-inspired structures, shells, membranes, space structures, lightweight structures, etc); (vi) the engineering process and life-cycle considerations (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). Two versions of the papers are available: full papers of length 6 pages are included in an e-book, while short papers of length 2 pages, intended to be concise but self-contained summaries of the full papers, are in this printed book. This work will be of interest to civil, structural, mechanical, marine and aerospace engineers, as well as planners and architects.




Fracture Mechanics of Concrete Structures


Book Description

This conference is the first in a series of conferences dedicated to Fracture Mechanics of Concrete Structures. Due to the recent explosion of interest in research on fracture in concrete, the conference has brought together the world's leading researchers in fracture of concrete and this book contains the proceedings.




Design of precast concrete structures against accidental actions


Book Description

Since the 1980’s, several buildings throughout the world have been subject to gas explosions, impact by cars or airplanes, or car bomb attacks. In many cases the effect of the impact or explosion has been the failure of a critical structural member at the perimeter of the building. After the failure, the load supported by that member could not be redistributed and part or all of the structure has collapsed in a progressive manner. The phenomenon that occurs when local failure is not confined to the area of initial distress, and spreads horizontally and/or vertically through the structure, is termed progressive collapse. Progressive collapse is a relatively rare event, as it requires both an accidental action to cause local damage and a structure that lacks adequate continuity, ductility, and redundancy to prevent the spread of damage. It is technically very difficult and economically prohibitive to design buildings for absolute safety. However it is possible to construct precast concrete buildings that afford an acceptable degree of safety with regard to accidental actions. A structure is normally designed to respond properly, without damage, under normal load conditions, but local and/or global damages cannot be avoided under the effect of an unexpected, but moderate degree of accidental overload. Properly designed and constructed structures usually possess reasonable probability not to collapse catastrophically under such loads, depending on different factors, for example: the type of loading; the degree and the location of accidental loading in regard to the structure and its structural members; the type of structural system, the construction technology, and the spans between structural vertical members, etc. No structure can be expected to be totally resistant to actions arising from an unexpected and extreme cause, but it should not be damaged to an extent that is disproportionate to the original cause. The aim of fib Bulletin 63 is to summarize the present knowledge on the subject and to provide guidance for the design of precast structures against progressive collapse. This is addressed in terms of (a) the classification of the actions, (b) their effect on the structural types, (c) the strategies to cope with such actions, (d) the design methods and (e) some typical detailing, all supplemented with illustrations from around the world, and some model calculations.