Dynamic Analysis of High-Speed Railway Alignment


Book Description

Dynamic Analysis of High-Speed Railway Alignment: Theory and Practice elaborates on the dynamic analysis theory and method on spatial alignment parameters of high-speed railways, revealing the interaction mechanism between vehicle-track dynamic performance and track parameters of high-speed railways. It ascertains the influence rules of track structure and track geometry on vehicle-track dynamic performance, establishes the relationship models between vehicle-track dynamic performance and curve dynamic characteristic parameters, and defines the calculation relationship between lateral acceleration of car body on curves and track parameters. This book can be used as a reference book for scientific researchers, engineering technicians and management engaged in railway engineering, and will be very helpful for railway technicians who want to learn more about route planning, design, and construction and maintenance technologies of high-speed railways. - Presents the dynamic effects between the running speed of high-speed trains on curves and spatial curve technical parameters - Provides dynamic analysis, theory and methods on curve parameters of high-speed railways and improves the calculation theory on spatial alignment of high-speed railways - Covers minimum curve radius, transition curve length, minimum radius of vertical curve, steepest slope, minimum slope length and length of intermediate straight line




Wind Forecasting in Railway Engineering


Book Description

Wind Forecasting in Railway Engineering presents core and leading-edge technologies in wind forecasting for railway engineering. The title brings together wind speed forecasting and railway wind engineering, offering solutions from both fields. Key technologies are presented, along with theories, modeling steps and comparative analyses of forecasting technologies. Each chapter presents case studies and applications, including typical applications and key issues, analysis of wind field characteristics, optimization methods for the placement of a wind anemometer, single-point time series along railways, deep learning algorithms on single-point wind forecasting, reinforcement learning algorithms, ensemble single-point wind forecasting methods, spatial wind, and data-driven spatial-temporal wind forecasting algorithms. This important book offers practical solutions for railway safety, by bringing together the latest technologies in wind speed forecasting and railway wind engineering into a single volume. - Presents the core technologies and most advanced developments in wind forecasting for railway engineering - Gives case studies and experimental designs, demonstrating real-world applications - Introduces cutting-edge deep learning and reinforcement learning methods - Combines the latest thinking from wind engineering and railway engineering - Offers a complete solution to wind forecasting in railway engineering for the safety of running trains




VIII International Scientific Siberian Transport Forum


Book Description

This book presents the findings of scientific studies on the successful operation of complex transport infrastructures in regions with extreme climatic and geographical conditions. It features the proceedings of the VIII International Scientific Siberian Transport Forum, TransSiberia 2019, which was held in Novosibirsk, Russia, on May 22–27, 2019. The book discusses improving energy efficiency in the transportation sector and the use of artificial intelligence in transport, highlighting a range of topics, such as freight and logistics, freeway traffic modelling and control, intelligent transport systems and smart mobility, transport data and transport models, highway and railway construction and trucking on the Siberian ice roads. Consisting of 214 high-quality papers on a wide range of issues, these proceedings appeal to scientists, engineers, managers in the transport sector, and anyone involved in the construction and operation of transport infrastructure facilities.




Dynamic Interaction of Train-Bridge Systems in High-Speed Railways


Book Description

This book presents both the fundamental theory and numerical calculations and field experiments used in a range of practical engineering projects. It not only provides theoretical formulations and various solutions, but also offers concrete methods to extend the life of existing bridge structures and presents a guide to the rational design of new bridges, such as high-speed railway bridges and long-span bridges. Further, it offers a reference resource for solving vehicle–structure dynamic interaction problems in the research on and design of all types of highways, railways and other transport structures.




Design of High-Speed Railway Turnouts


Book Description

High-speed turnouts, a key technology for high-speed railways, have a great influence on the safe and stable running of high-speed trains. Design of High-Speed Railway Turnouts: Theory and Applications, comprehensively introduces the technical characteristics and requirements of high-speed turnouts, including design theories and methods of turnout layout geometry, wheel and rail relations, track stiffness, welded turnout, turnout conversion, turnout components, and manufacture and laying technologies of turnouts. Analyzing the operational problems of China's high-speed turnout in particular, this book discusses the control of structure irregularity, state irregularity, geometrical irregularity and dynamic irregularity during the design, manufacture, laying, and maintenance of turnouts. At the end of this reference book, the author provides high-speed turnouts management methods, maintenance standards, testing and monitoring technology, and maintenance technology. Design of High-Speed Railway Turnouts: Theory and Applications will enable railway technicians all over the world to develop an in-depth knowledge of the design, manufacture, laying, and maintenance technology of high-speed turnouts. - The first book in the world to focus explicitly on high-speed turnouts, including design, construction, maintenance and management of high speed turnouts - Expounds the theory of vehicle-turnout system coupling dynamics in detail, aligning this with several examples of computation, and examines the results of dynamic experiments which validate the theory - Written by Ping Wang, who is recognized as a leading researcher and main developer of high-speed turnouts in China




High Speed Railway Track Dynamics


Book Description

The second edition of this book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway and railway engineering.




High-speed Railway Bridges


Book Description

The need for large-scale bridges is constantly growing worldwide, as the expansion of transport infrastructures with rail roads and high-speed lines is an important current task in many regions. This book develops all aspects referring to the structural conceptional design and analysis that are taken into account when planning a bridge or viaduct for a high-speed rail line. That includes the characteristics of the railway traffic such as speeds, actions, limit states, etc., and a detailed analysis of the superstructure of the track with its various components and singular elements. One of the special features of the book is that it not only highlights the bridge typologies and structural components related to the bridge design but also takes into account the issues of the track construction. The design basis, the requirements from different situations, and solutions are given. Special attention is paid to the interactions between the structure and the track and to the dynamic nature of railway actions, studying the dynamic response of the structure and its influence on the behaviour of the track and its components as well as on safety, traffic flow quality, and maintenance needs. The particulars of the design of high-speed rail bridges located in seismic areas are included as well. Numerous examples in all chapters serve the book's character as a useful guide to HSR bridge design, and to prevent typical problems and errors. An appendix with selected HSR bridges built worldwide completes the work. With this work the authors provide first-hand experience gained from many years of planning of completed bridges for high-speed rail lines.




Vehicle–Track Coupled Dynamics


Book Description

This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the ‘Vehicle–Track Coupled Dynamics’. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle–track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel–rail interaction. This new theory enables a more comprehensive and accurate solution to the train–track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering. /div




Handbook of Railway Vehicle Dynamics, Second Edition


Book Description

Handbook of Railway Vehicle Dynamics, Second Edition, provides expanded, fully updated coverage of railway vehicle dynamics. With chapters by international experts, this work surveys the main areas of rolling stock and locomotive dynamics. Through mathematical analysis and numerous practical examples, it builds a deep understanding of the wheel-rail interface, suspension and suspension component design, simulation and testing of electrical and mechanical systems, and interaction with the surrounding infrastructure, and noise and vibration. Topics added in the Second Edition include magnetic levitation, rail vehicle aerodynamics, and advances in traction and braking for full trains and individual vehicles.




Dynamics of High-Speed Railway Bridges


Book Description

The dynamic behaviour of bridges strongly affects the infrastructure system of high-speed railways, and is a crucial factor in safety issues and passenger comfort. Dynamics of High-Speed Railway Bridges covers the latest research in this field, including: Recently developed dynamic analysis techniques; Train excitations; Design issues fo