Dynamic Failure of Materials and Structures


Book Description

Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.




Dynamic Failure of Materials and Structures


Book Description

Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.




Dynamics of Materials


Book Description

Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. - Covers models for applications, along with the fundamentals of the mechanisms behind the models - Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms - Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials




Handbook of Materials Failure Analysis


Book Description

Handbook of Materials Failure Analysis: With Case Studies from the Electronics Industries examines the reasons materials fail in certain situations, including material defects and mechanical failure as a result of various causes. The book begins with a general overview of materials failure analysis and its importance. It then proceeds to discussions on the types of failure analysis, specific tools and techniques, and an analysis of materials failure from various causes. As failure can occur for several reasons, including materials defects-related failure, materials design-related failure, or corrosion-related failures, the topics covered in this comprehensive source are an important tool for practitioners. - Provides the most up-to-date and balanced coverage of failure analysis, combining foundational knowledge and current research on the latest developments and innovations in the field - Offers an ideal accompaniment for those interested in materials forensic investigation, failure of materials, static failure analysis, dynamic failure analysis, and fatigue life prediction - Presents compelling new case studies from key industries to demonstrate concepts




Dynamic Failure of Composite and Sandwich Structures


Book Description

This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of impact on laminated composite structures with chapters devoted to ballistic impacts on pre-stressed composite structures, tests developed to simulate dynamic failure in marine structures, damage mechanisms and energy absorption in low velocity impacts, perforation, the numerical simulation of intra and inter-ply damage during impact, and hail impact on laminated composites. Sandwich structures with laminated facings are considered in Section 3 with chapters dealing with the discrete modeling of honeycomb core during the indentation of sandwich structures, the behavior of fold core sandwich structures during impact, and impact on helicopter blades. The fourth section consists of two chapters presenting experimental results and numerical simulation of composite structures subjected to crash. This volume is intended for advanced undergraduate and graduate students, researchers, and engineers interested and involved in analysis and design of composite structures.




Dynamic Fracture Mechanics


Book Description

This volume focuses on the development and analysis of mathematical models of fracture phenomena.




The Theory of Materials Failure


Book Description

A complete and comprehensive theory of failure is developed for homogeneous and isotropic materials. The full range of materials types are covered from very ductile metals to extremely brittle glasses and minerals. Two failure properties suffice to predict the general failure conditions under all states of stress. With this foundation to build upon, many other aspects of failure are also treated, such as extensions to anisotropic fiber composites, cumulative damage, creep and fatigue, and microscale and nanoscale approaches to failure.




Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries


Book Description

Handbook of Materials Failure Analysis: With Case Studies from the Aerospace and Automotive Industries provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios, including material defects, mechanical failure as a result of improper design, corrosion, surface fracture, and other environmental causes. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to chapters on analysis of materials failure from various causes. Later chapters feature a selection of newer examples of failure analysis cases in such strategic industrial sectors as aerospace, oil & gas, and chemicals. - Covers the most common types of materials failure, analysis, and possible solutions - Provides the most up-to-date and balanced coverage of failure analysis, combining foundational knowledge, current research on the latest developments, and innovations in the field - Ideal accompaniment for those interested in materials forensic investigation, failure of materials, static failure analysis, dynamic failure analysis, fatigue life prediction, rotorcraft, failure prediction, fatigue crack propagation, bevel pinion failure, gasketless flange, thermal barrier coatings - Presents compelling new case studies from key industries to demonstrate concepts - Highlights the role of site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, metallurgical and electrochemical factors, and morphology of failure




Mechanics of Failure Mechanisms in Structures


Book Description

This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthermore, the book reviews a large number of experimental results on these failure mechanisms. The book will benefit structural and materials engineers and researchers seeking a “birds-eye” view of possible failure mechanisms in structures along with the associated failure and structural mechanics.




Dynamic Failure of Composite and Sandwich Structures


Book Description

This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of impact on laminated composite structures with chapters devoted to ballistic impacts on pre-stressed composite structures, tests developed to simulate dynamic failure in marine structures, damage mechanisms and energy absorption in low velocity impacts, perforation, the numerical simulation of intra and inter-ply damage during impact, and hail impact on laminated composites. Sandwich structures with laminated facings are considered in Section 3 with chapters dealing with the discrete modeling of honeycomb core during the indentation of sandwich structures, the behavior of fold core sandwich structures during impact, and impact on helicopter blades. The fourth section consists of two chapters presenting experimental results and numerical simulation of composite structures subjected to crash. This volume is intended for advanced undergraduate and graduate students, researchers, and engineers interested and involved in analysis and design of composite structures.