Science Abstracts


Book Description










Machine Learning in Document Analysis and Recognition


Book Description

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.




Neural Networks and Statistical Learning


Book Description

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.




FPGA Implementations of Neural Networks


Book Description

During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.




Handwriting Identification


Book Description

"Forensic document examination is the study of physical evidence and physical evidence cannot lie. Only its interpretation can err. Only the failure to find it, or to hear its true testimony can deprive it of its value." - Roy Huber, author A definitive review of handwriting identification, this book presents, in a general manner, how to approach document examination and then, in particular, how to apply handwriting identification to the document. Types of handwriting are discussed in detail. For the first time in the field of questioned document examination, Handwriting Identification: Facts and Fundamentals consolidates the pertinent information from published and unpublished sources respecting writing, that is essential to the expansion of a practitioner's general knowledge of handwriting identification and to the proper education of novices. Written in a question and answer format, the book suggests some of the questions that one might ask of an examiner and provides the answers that knowledgeable and competent examiners should be expected to give. This book is a valuable addition to law libraries and to every practicing document examiner, as well as every lawyer handling cases in which the authenticity of handwriting might be disputed.




Hierarchical Neural Networks for Image Interpretation


Book Description

Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.




Data Science


Book Description

This book targets an audience with a basic understanding of deep learning, its architectures, and its application in the multimedia domain. Background in machine learning is helpful in exploring various aspects of deep learning. Deep learning models have a major impact on multimedia research and raised the performance bar substantially in many of the standard evaluations. Moreover, new multi-modal challenges are tackled, which older systems would not have been able to handle. However, it is very difficult to comprehend, let alone guide, the process of learning in deep neural networks, there is an air of uncertainty about exactly what and how these networks learn. By the end of the book, the readers will have an understanding of different deep learning approaches, models, pre-trained models, and familiarity with the implementation of various deep learning algorithms using various frameworks and libraries.