Dynamic Modeling in Behavioral Ecology


Book Description

This book describes a powerful and flexible technique for the modeling of behavior, based on evolutionary principles. The technique employs stochastic dynamic programming and permits the analysis of behavioral adaptations wherein organisms respond to changes in their environment and in their own current physiological state. Models can be constructed to reflect sequential decisions concerned simultaneously with foraging, reproduction, predator avoidance, and other activities. The authors show how to construct and use dynamic behavioral models. Part I covers the mathematical background and computer programming, and then uses a paradigm of foraging under risk of predation to exemplify the general modeling technique. Part II consists of five "applied" chapters illustrating the scope of the dynamic modeling approach. They treat hunting behavior in lions, reproduction in insects, migrations of aquatic organisms, clutch size and parental care in birds, and movement of spiders and raptors. Advanced topics, including the study of dynamic evolutionarily stable strategies, are discussed in Part III.




Dynamic State Variable Models in Ecology


Book Description

This book introduces readers to a set of powerful and extremely flexible modeling techniques--starting at "square one"--and is ideal for students and scientists in behavior studies, ecology, anthropology, conservation biology, and related fields.




Eco-Evolutionary Dynamics


Book Description

The theme of this volume is to discuss Eco-evolutionary Dynamics. - Updates and informs the reader on the latest research findings - Written by leading experts in the field - Highlights areas for future investigation




Evolutionary Ecology and Human Behavior


Book Description

""à required reading for anyone interested in the economy, ecology, and demography of human societies."" --American Journal of Human Biology ""This excellent book can serve both as a text¼book and as a scholarly reference."" --American Scientist




Dynamic State Variable Models in Ecology


Book Description

This book introduces readers to a set of powerful and extremely flexible modeling techniques, starting at "square one" and continuing with carefully chosen applications. Some of these applications of methodology include insect oviposition behavior, overwinter survival of birds and fish, avian migration, resource management, conservation biology, agroecology, and human behavior. This book also explains how to construct, test, and use dynamic state variable models in a wide range of contexts in evolutionary ecology, and its complete and up-to-date coverage allows readers to immediately begin using the described techniques. Dynamic State Variable Models in Ecology is designed for self-instruction or for use in upper division undergraduate or graduate courses. It is ideal for students and scientists interested in behavior, ecology, anthropology, conservation biology, and related fields.




Dynamic Modeling in Behavioral Ecology


Book Description

This book describes a powerful and flexible technique for the modeling of behavior, based on evolutionary principles. The technique employs stochastic dynamic programming and permits the analysis of behavioral adaptations wherein organisms respond to changes in their environment and in their own current physiological state. Models can be constructed to reflect sequential decisions concerned simultaneously with foraging, reproduction, predator avoidance, and other activities. The authors show how to construct and use dynamic behavioral models. Part I covers the mathematical background and computer programming, and then uses a paradigm of foraging under risk of predation to exemplify the general modeling technique. Part II consists of five "applied" chapters illustrating the scope of the dynamic modeling approach. They treat hunting behavior in lions, reproduction in insects, migrations of aquatic organisms, clutch size and parental care in birds, and movement of spiders and raptors. Advanced topics, including the study of dynamic evolutionarily stable strategies, are discussed in Part III.




Evolution Driven by Organismal Behavior


Book Description

This book proposes a new way to think about evolution. The author carefully brings together evidence from diverse fields of science. In the process, he bridges the gaps between many different--and usually seen as conflicting--ideas to present one integrative theory named ONCE, which stands for Organic Nonoptimal Constrained Evolution. The author argues that evolution is mainly driven by the behavioral choices and persistence of organisms themselves, in a process in which Darwinian natural selection is mainly a secondary--but still crucial--evolutionary player. Within ONCE, evolution is therefore generally made of mistakes and mismatches and trial-and-error situations, and is not a process where organisms engage in an incessant, suffocating struggle in which they can't thrive if they are not optimally adapted to their habitats and the external environment. Therefore, this unifying view incorporates a more comprehensive view of the diversity and complexity of life by stressing that organisms are not merely passive evolutionary players under the rule of external factors. This insightful and well-reasoned argument is based on numerous fascinating case studies from a wide range of organisms, including bacteria, plants, insects and diverse examples from the evolution of our own species. The book has an appeal to researchers, students, teachers, and those with an interest in the history and philosophy of science, as well as to the broader public, as it brings life back into biology by emphasizing that organisms, including humans, are the key active players in evolution and thus in the future of life on this wonderful planet.




Evolutionary Ecology of Parasites


Book Description

Parasites have evolved independently in numerous animal lineages, and they now make up a considerable proportion of the biodiversity of life. Not only do they impact humans and other animals in fundamental ways, but in recent years they have become a powerful model system for the study of ecology and evolution, with practical applications in disease prevention. Here, in a thoroughly revised and updated edition of his influential earlier work, Robert Poulin provides an evolutionary ecologist's view of the biology of parasites. He sets forth a comprehensive synthesis of parasite evolutionary ecology, integrating information across scales from the features of individual parasites to the dynamics of parasite populations and the structuring of parasite communities. Evolutionary Ecology of Parasites presents an evolutionary framework for the study of parasite biology, combining theory with empirical examples for a broader understanding of why parasites are as they are and do what they do. An up-to-date synthesis of the field, the book is an ideal teaching tool for advanced courses on the subject. Pointing toward promising directions and setting a research agenda, it will also be an invaluable reference for researchers who seek to extend our knowledge of parasite ecology and evolution.




Evolutionary Ecology Across Three Trophic Levels


Book Description

In a work that will interest researchers in ecology, genetics, botany, entomology, and parasitology, Warren Abrahamson and Arthur Weis present the results of more than twenty-five years of studying plant-insect interactions. Their study centers on the ecology and evolution of interactions among a host plant, the parasitic insect that attacks it, and the suite of insects and birds that are the natural enemies of the parasite. Because this system provides a model that can be subjected to experimental manipulations, it has allowed the authors to address specific theories and concepts that have guided biological research for more than two decades and to engage general problems in evolutionary biology. The specific subjects of research are the host plant goldenrod (Solidago), the parasitic insect Eurosta solidaginis (Diptera: Tephritidae) that induces a gall on the plant stem, and a number of natural enemies of the gallfly. By presenting their detailed empirical studies of the Solidago-Eurosta natural enemy system, the authors demonstrate the complexities of specialized enemy-victim interactions and, thereby, the complex interactive relationships among species more broadly. By utilizing a diverse array of field, laboratory, behavioral, genetic, chemical, and statistical techniques, Abrahamson and Weis present the most thorough study to date of a single system of interacting species. Their interest in the evolutionary ecology of plant-insect interactions leads them to insights on the evolution of species interactions in general. This major work will interest anyone involved in studying the ways in which interdependent species interact.




Behavioral Mechanisms in Evolutionary Ecology


Book Description

The first book-length exploration of behavioral mechanisms in evolutionary ecology, this ambitious volume illuminates long-standing questions about cause-and-effect relations between an animal's behavior and its environment. By focusing on biological mechanisms—the sum of an animal's cognitive, neural, developmental, and hormonal processes—leading researchers demonstrate how the integrated study of animal physiology, cognitive processes, and social interaction can yield an enriched understanding of behavior. With studies of species ranging from insects to primates, the contributors examine how various animals identify and use environmental resources and deal with ecological constraints, as well as the roles of learning, communication, and cognitive aspects of social interaction in behavioral evolution. Taken together, the chapters demonstrate how the study of internal mechanistic foundations of behavior in relation to their ecological and evolutionary contexts and outcomes provides valuable insight into such behaviors as predation, mating, and dispersal. Behavioral Mechanisms in Evolutionary Ecology shows how a mechanistic approach unites various levels of biological organization to provide a broader understanding of the biological bases of behavioral evolution.