Dynamic Processes in Solids


Book Description

The results obtained from kinetic studies on reactions in solids often depend on numerous factors. Therefore, it is important for researchers to understand how both chemical factors related to composition and procedural choices may influence outcomes. Dynamic Processes in Solids provides an authoritative overview of reactions in solids and helps readers interpret the results obtained from kinetic studies. In chapters written by active researchers, the reader will learn about choosing appropriate experimental techniques and their limitations for studying various types of reactions. Beginning with an introduction to numerous aspects of rate processes in solids and experimental techniques, information is provided on rate laws, factors affecting rates, diffusion, and sintering. Subsequent chapters deal with electrical conductivity in dispersed phase polymers, thermochemical reactions for producing solid materials, reactions in coordination compounds, dynamic observations on plastic deformation, light driven phenomena in quantum materials, decomposition of perovskite photovoltaic compounds, and reaction of oxygen radicals with surfaces. This book is a practical introduction to the field for chemists and researchers whose work is directly related to dynamic changes in solids, and additionally for those in related fields whose work would be enhanced by an understanding of these types of rate processes. - Presents useful discussions of the applications of several experimental techniques - Describes approaches for synthesis of solid materials by thermochemical reactions - Presents theoretical interpretation structural dynamics and processes at the molecular level in solids - Provides information on the relationships between performance and rate processes in several types of materials related to electronic behavior




Dynamic Flowsheet Simulation of Solids Processes


Book Description

This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.




Two-Dimensional Coulomb Liquids and Solids


Book Description

This coherent monograph describes and explains quantum phenomena in two-dimensional (2D) electron systems with extremely strong internal interactions, which cannot be described by the conventional Fermi-liquid approach. The central physical objects considered are the 2D Coulomb liquid, of which the average Coulomb interaction energy per electron is much higher than the mean kinetic energy, and the Wigner solid. The text provides a new and comprehensive review of the remarkable properties of Coulomb liquids and solids formed on the free surface of liquid helium and other interfaces. This book is intended for graduate students and researchers in the fields of quantum liquids, electronic properties of 2D systems, and solid-state physics. It includes different levels of sophistication so as to be useful for both theorists and experimentalists. The presentation is largely self-contained, and also describes some instructive examples that will be of general interest to solid-state physicists.




Contact, Adhesion and Rupture of Elastic Solids


Book Description

This book, based on the analogy between contact mechanics and fracture mechanics proposed by the author twenty years ago, starts with a treatment of the surface energy and tension of solids and surface thermodynamics. The essential concepts of fracture mechanics are presented with emphasis on the thermodynamic aspects. Readers will find complete analytical results and detailed calculations for cracks submitted to pressure distributions and the Dugdale model. Contact mechanics and the contact and adherence of rough solids are also covered.




Multiscale Solid Mechanics


Book Description

This book provides an overview of the current of the state of the art in the multiscale mechanics of solids and structures. It comprehensively discusses new materials, including theoretical and experimental investigations their durability and strength, as well as fractures and damage




Introduction to Solid State Chemistry


Book Description

Introduction to Solid State Chemistry provides a strong background to the structures of solids and factors that determine this structure. The content presented will also stress transformations of solids both in physical forms and chemical composition. In so doing, topics such as phase transitions, sintering, reactions of coordination compounds, photovoltaic compounds are described, whilst kinetics and mechanisms of solid state reactions are covered in depth. There are currently few books that deal with solid state chemistry, where a considerable number instead deal with solid state physics and materials science/engineering. This book provides someone needing or wishing to learn about the chemistry of solids a comprehensive resource that describes structures of solids, the behaviour of solids under applied stresses, the types of reactions that solids undergo, and the phenomenological aspects of reactions in solids. Kinetics of reactions in solids is very seldom covered in current literature and an understanding of the mechanisms of reactions in solids is necessary for many applications. James E. House provides a balanced treatment of structure, dynamics, and behaviour of solids at a level commensurate with upper-level undergraduates or beginning graduate students who wish to obtain an introduction and overview to solid state chemistry. - Provides a?fundamental introduction and entry point to solid state chemistry, acting as a useful prerequisite for further learning in the area - Presents a balanced approach that not only emphasizes structures of solids but also provides information on reactions of solids and how they occur - Gives much-needed focus to the kinetics of reactions of solids and their mechanisms where existing literature covers little of this - Explores crucial solid state chemistry topics such as solar energy conversion, reactions of solid coordination compounds, diffusion, sintering, and other transformations of solids - Features accessible and well-written examples and case studies featuring many new and bespoke supporting illustrations, offering an excellent framework that will help students to understand reaction mechanisms




Nuclear Magnetic Resonance


Book Description

As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.




Fault Zone Dynamic Processes


Book Description

Earthquakes are some of the most dynamic features of the Earth. This multidisciplinary volume presents an overview of earthquake processes and properties including the physics of dynamic faulting, fault fabric and mechanics, physical and chemical properties of fault zones, dynamic rupture processes, and numerical modeling of fault zones during seismic rupture. This volume examines questions such as: • What are the dynamic processes recorded in fault gouge? • What can we learn about rupture dynamics from laboratory experiments? • How do on-fault and off-fault properties affect seismic ruptures? • How do fault zones evolve over time? Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture is a valuable resource for scientists, researchers and students from across the geosciences interested in the earthquakes processes.




Inorganic Chemistry


Book Description

This textbook provides essential information for students of inorganic chemistry or for chemists pursuing self-study. The presentation of topics is made with an effort to be clear and concise so that the book is portable and user friendly. Inorganic Chemistry 2E is divided into five major themes (structure, condensed phases, solution chemistry, main group and coordination compounds) with several chapters in each. There is a logical progression from atomic structure to molecular structure to properties of substances based on molecular structures, to behavior of solids, etc. The author emphasizes fundamental principles-including molecular structure, acid-base chemistry, coordination chemistry, ligand field theory, and solid state chemistry -and presents topics in a clear, concise manner. There is a reinforcement of basic principles throughout the book. For example, the hard-soft interaction principle is used to explain hydrogen bond strengths, strengths of acids and bases, stability of coordination compounds, etc. The book contains a balance of topics in theoretical and descriptive chemistry. New to this Edition: New and improved illustrations including symmetry and 3D molecular orbital representationsExpanded coverage of spectroscopy, instrumental techniques, organometallic and bio-inorganic chemistryMore in-text worked-out examples to encourage active learning and to prepare students for their exams . Concise coverage maximizes student understanding and minimizes the inclusion of details students are unlikely to use. . Discussion of elements begins with survey chapters focused on the main groups, while later chapters cover the elements in greater detail. . Each chapter opens with narrative introductions and includes figures, tables, and end-of-chapter problem sets.




Annual Reports on NMR Spectroscopy


Book Description

Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has grown to such importance as NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR has established itself as a premier means for the specialist and nonspecialist alike to become familiar with new techniques and applications of NMR spectroscopy. * Includes comprehensive review articles on NMR Spectroscopy * NMR is used in all branches of science * No other technique has grown to such importance as NMR Spectroscopy in recent years