Dynamic Systems Control


Book Description

This text deals with matrix methods for handling, reducing, and analyzing data from a dynamic system, and covers techniques for the design of feedback controllers for those systems which can be perfectly modeled. Unlike other texts at this level, this book also provides techniques for the design of feedback controllers for those systems which cannot be perfectly modeled. In addition, presentation draws attention to the iterative nature of the control design process, and introduces model reduction and concepts of equivalent models, topics not generally covered at this level. Chapters cover mathematical preliminaries, models of dynamic systems, properties of state space realizations, controllability and observability, equivalent realizations and model reduction, stability, optimal control of time-variant systems, state estimation, and model error concepts and compensation. Extensive appendixes cover the requisite mathematics.




Dynamic Systems And Control With Applications


Book Description

In recent years significant applications of systems and control theory have been witnessed in diversed areas such as physical sciences, social sciences, engineering, management and finance. In particular the most interesting applications have taken place in areas such as aerospace, buildings and space structure, suspension bridges, artificial heart, chemotherapy, power system, hydrodynamics and computer communication networks. There are many prominent areas of systems and control theory that include systems governed by linear and nonlinear ordinary differential equations, systems governed by partial differential equations including their stochastic counter parts and, above all, systems governed by abstract differential and functional differential equations and inclusions on Banach spaces, including their stochastic counterparts. The objective of this book is to present a small segment of theory and applications of systems and control governed by ordinary differential equations and inclusions. It is expected that any reader who has absorbed the materials presented here would have no difficulty to reach the core of current research.




Estimation and Control of Dynamical Systems


Book Description

This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.




Modelling and Control of Dynamic Systems Using Gaussian Process Models


Book Description

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.




Feedback Control of Dynamic Systems Int


Book Description

This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.




Optimization and Control of Dynamic Systems


Book Description

This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.




Dynamic Systems with Time Delays: Stability and Control


Book Description

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.




Robust Control of Uncertain Dynamic Systems


Book Description

This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.




Modeling and Control of Discrete-event Dynamic Systems


Book Description

Discrete-event dynamic systems (DEDs) permeate our world. They are of great importance in modern manufacturing processes, transportation and various forms of computer and communications networking. This book begins with the mathematical basics required for the study of DEDs and moves on to present various tools used in their modeling and control. Industrial examples illustrate the concepts and methods discussed, making this book an invaluable aid for students embarking on further courses in control, manufacturing engineering or computer studies.




Control Theory of Digitally Networked Dynamic Systems


Book Description

The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamics. The book includes numerous references to the most recent literature. Many methods are illustrated by numerical examples or experimental results.