Dynamical Issues in Combustion Theory


Book Description

This IMA Volume in Mathematics and its Applications DYNAMICAL ISSUES IN COMBUSTION THEORY is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications." The aim of this workshop was to cross-fertilize research groups working in topics of current interest in combustion dynamics and mathematical methods applicable thereto. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, George R. Sell, Paul Fife, Amable Liiian and Foreman Williams for organizing the meeting. We especially thank Paul Fife, Amable Liiilin and Foreman Williams for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foundation and the Office of Naval Research. Avner Friedman Willard Miller, Jr. ix PREFACE The world ofcombustion phenomena is rich in problems intriguing to the math ematical scientist. They offer challenges on several fronts: (1) modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, (2) devising appropriate asymptotic and computational methods, and (3) developing sound mathematical theories. Papers in the present volume, which are based on talks given at the Workshop on Dynamical Issues in Combustion Theory in November, 1989, describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactiveshocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants.




Dynamical Issues in Combustion Theory


Book Description

The world of combustion phenomena is rich in problems intriguing to the mathematical scientists, offering challenges on several fronts: mathematical modeling, devising appropriate asymptotic and computational methods, and developing sound mathematical theories. Papers in this volume describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactive shocks, low mach number premixed reactive flow, nonpremixed phenomena, and solid propellants. The types of phenomena they examine are also diverse: properties of interfaces and shocks, including curvature effects, the stability and other properties of steady structures, the long time dynamics of evolving solutions, and spatio-temporal patterns. These issues are foremost in combustion research; the papers collected here provide a good representative sampling of contemporary activity in this field.




Fluid Dynamical Aspects of Combustion Theory


Book Description

This Research Note contains papers presented in a series of seminars held at the Istituto per le Applicazioni del Calcolo M. Picone of the Italian National Research Council (CNR), during the special year devoted to Fluid Dynamical Aspects of Combustion Theory.




Combustion Theory


Book Description

Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.




Combustion Thermodynamics and Dynamics


Book Description

Combustion Thermodynamics and Dynamics builds on a foundation of thermal science, chemistry, and applied mathematics that will be familiar to most undergraduate aerospace, mechanical, and chemical engineers to give a first-year graduate-level exposition of the thermodynamics, physical chemistry, and dynamics of advection-reaction-diffusion. Special effort is made to link notions of time-independent classical thermodynamics with time-dependent reactive fluid dynamics. In particular, concepts of classical thermochemical equilibrium and stability are discussed in the context of modern nonlinear dynamical systems theory. The first half focuses on time-dependent spatially homogeneous reaction, while the second half considers effects of spatially inhomogeneous advection and diffusion on the reaction dynamics. Attention is focused on systems with realistic detailed chemical kinetics as well as simplified kinetics. Many mathematical details are presented, and several quantitative examples are given. Topics include foundations of thermochemistry, reduced kinetics, reactive Navier–Stokes equations, reaction-diffusion systems, laminar flame, oscillatory combustion, and detonation.




Turbulent Combustion Modeling


Book Description

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.




Dynamics of Combustion Systems


Book Description

The Dynamics of Combustion Systems are presented in three parts in this book providing a step towards the automatic control of explosions. The exothermic character of combustion systems, their fluid dynamic features, and explosive nature, are covered by this work which also provides a technical monograph for readers with some background in combustion technology. Suitable for graduate students, and researchers in academia and industry.







Computational Fluid Dynamics in Industrial Combustion


Book Description

Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.