Dynamics and Bifurcation of Patterns in Dissipative Systems


Book Description

Contains a collection of expository papers and advanced research articles which provide an overview the state of the art. Topics include new approaches to the mathematical characterization of spatiotemporal complexity as well as analysis of patterns in a variety of applied fields.




Dynamics And Bifurcation Of Patterns In Dissipative Systems


Book Description

Understanding the spontaneous formation and dynamics of spatiotemporal patterns in dissipative nonequilibrium systems is one of the major challenges in nonlinear science. This collection of expository papers and advanced research articles, written by leading experts, provides an overview of the state of the art. The topics include new approaches to the mathematical characterization of spatiotemporal complexity, with special emphasis on the role of symmetry, as well as analysis and experiments of patterns in a remarkable variety of applied fields such as magnetoconvection, liquid crystals, granular media, Faraday waves, multiscale biological patterns, visual hallucinations, and biological pacemakers. The unitary presentations, guiding the reader from basic fundamental concepts to the most recent research results on each of the themes, make the book suitable for a wide audience.




Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability


Book Description

The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .




The Dynamics Of Pattern


Book Description

Spirals, vortices, crystalline lattices, and other attractive patterns are prevalent in Nature. How do such beautiful patterns appear from the initial chaos? What universal dynamical rules are responsible for their formation? What is the dynamical origin of spatial disorder in nonequilibrium media? Based on the many visual experiments in physics, hydrodynamics, chemistry, and biology, this invaluable book answers those and related intriguing questions. The mathematical models presented for the dynamical theory of pattern formation are nonlinear partial differential equations. The corresponding theory is not so accessible to a wide audience. Consequently, the authors have made every attempt to synthesize long and complex mathematical calculations to exhibit the underlying physics. The book will be useful for final year undergraduates, but is primarily aimed at graduate students, postdoctoral fellows, and others interested in the puzzling phenomena of pattern formation.




Pattern Formation and Dynamics in Nonequilibrium Systems


Book Description

An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.







Thinking in Complexity


Book Description

This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.




Patterns and Interfaces in Dissipative Dynamics


Book Description

Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.




Numerical Bifurcation Analysis for Reaction-Diffusion Equations


Book Description

This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.




Elements of Applied Bifurcation Theory


Book Description

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.