Dynamics of Deflagrations and Reactive Systems--heterogeneous Combustion


Book Description

The four companion volumes on Dynamics of Deflagrations and Reactive Systems and Dynamics of Detonations and Explosions present 91 of the149 papers given at the Twelfth International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) held at the University of Michigan in Ann Arbor during July 1989. Four volumes: Dynamics of Deflagrations and Reactive Systems: Flames (Volume 131) and Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion (Volume 132) span a broad area, encompassing the processes of coupling the exothermic energy release with the fluid dynamics occurring in any combustion process. Dynamics of Detonations and Explosions: Detonations (Volume 133) and Dynamics of Detonations and Explosions: Explosion Phenomena (Volume 134) principally address the rate processes of energy deposition in a compressible medium and the concurrent nonsteady flow as it typically occurs in explosion phenomena. In this volume, Dynamics of Detonations and Explosions: Detonations, the papers have been arranged into chapters on gaseous detonations, detonation initiation and transmission, nonideal detonations and boundary effects, and multiphase detonations. Although the brevity of this preface does not permit the editors to do justice to all papers, we offer the following highlights of some of the especially noteworthy contributions.













Advances in Turbulence Studies


Book Description













Some Engineering Applications in Random Vibrations & Random Structures


Book Description

Annotation This text synthesizes a wealth of useful information for analyzing random vibrations and structures into one coherent body of knowledge. It takes a practical yet progressive look at two major fields related to random analysis: linear and geometrically nonlinear structures, and the behavior of random structures under random loads. System harmonics and oscillations, random functions, and the theory of random vibration are covered extensively throughout the text, which includes innovative methods for calculating the probability of failure for dynamic systems. Simplified examples demonstrate applications for daily use and present new approaches to failure analysis. The author evaluates the use of random process methods for the stochastic analysis of crack growth in detail, providing a better description of failures resulting from crack propagation. For young engineers, the book touches on finite element programs such as ANSYS and the probabilistic analysis program PROBAN, facilitating solutions to more complex problems. It also illustrates how to write a FORTRAN program to build a numerical procedure suitable for the design needs.