Mode Selective Chemistry


Book Description

The Twenty Fourth Jerusalem Symposium reflected the high standards of these distinguished scientific meetings, which convene once a year at the Israel Academy of Sciences and Humanities in Jerusalem to discuss a specific topic in the broad area of quantum chemistry and biochemistry. The topic at this year's Jerusalem Symposium was mode selective chemistry, which constitutes a truly interdisciplinary subject of central interest in the areas of chemical physics, photochemistry and photobiology. The main theme of the Symposium was built around the exploration of the possibility and conditions for non-statistical reaction dynamics in molecules, van der Waals molecules, clusters and condensed phases. The main issues addressed photoselective and coherent excitation modes, bottlenecks for intramolecular vibrational energy redistribution, the consequences of the internal structure of many-atom systems and of rotational vibrational level structure for intramolecular dynamics, bond selective photodissociation, ultrafast chemical clocks for energy disposal, coherent control of photochemical reactions and nonstatistical unimolecular reaction dynamics. The interdisciplinary nature of this research area was deliberated by intensive and extensive interactions between theory and experiment. This volume provides a record of the invited lectures at the Symposium.




Dynamics of Gas-Surface Interactions


Book Description

This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field.




Book of Abstracts


Book Description




Low Energy Ion-Surface Interactions


Book Description

Low Energy Ion--Surface Interactions Edited by J. Wayne Rabalais, University of Houston, Texas, USA Recent advances in experimental techniques and theoretical methodologies mean that increasingly detailed and sophisticated studies of state--or energy--selected molecular ions can now be performed. Each volume in this series will be dedicated to reviewing a specific topic, emphasizing new experimental and theoretical developments in the study of ions. This volume details the current understanding of Low Energy Ion--Surface Interactions, along with some of the novel applications. Each of the ten chapters is authored by active researchers in the field who are at the forefront of research in their particular areas. This up-to-date compilation, detailing developments occurring within the last five years, will be particularly useful to researchers and teachers involved with Low Energy Ion--Surface Interactions.







Plasma Catalysis


Book Description

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.




Physics Briefs


Book Description




The Encyclopedia of Mass Spectrometry


Book Description

This multi-volume work provides comprehensive coverage of the full range of topics and techniques in mass spectrometry. Techniques, methods and applications are described in detail; including limitations, current problems, and areas in which the method does not succeed well.







Chemical Abstracts


Book Description