Dynamics of Fracture


Book Description

In this book a new phenomenological approach to brittle medium fracture initiation under shock pulses is developped. It provides an opportunity to estimate fracture of media with and without macrodefects. A qualitative explanation is thus obtained for a number of principally important effects of high-speed dynamic fracture that cannot be clarified within the framework of previous approaches. It is possible to apply this new strategy to resolve applied problems of disintegration, erosion, and dynamic strength determination of structural materials. Specialists can use the methods described to determine critical characteristics of dynamic strength and optimal effective fracture conditions for rigid bodies. This book can also be used as a special educational course on deformation of materials and constructions, and fracture mechanics.




Dynamic Fracture Mechanics


Book Description

This volume focuses on the development and analysis of mathematical models of fracture phenomena.




A Practical Approach to Fracture Mechanics


Book Description

A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques




Fracture Mechanics


Book Description

Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.




Models and Phenomena in Fracture Mechanics


Book Description

Presenting the most important results, methods, and open questions, this book describes and compares advanced models in fracture mechanics. The author introduces the required mathematical technique, mainly the theory of analytical functions, from scratch.




Fracture Mechanics


Book Description

Fracture mechanics studies the development and spreading of cracks in materials. The study uses two techniques including analytical and experimental solid mechanics. The former is used to determine the driving force on a crack and the latter is used to measure material's resistance to fracture. The text begins with a detailed discussion of fundamental concepts including linear elastic fracture mechanics (LEFM), yielding fracture mechanics, mixed mode fracture and computational aspects of linear elastic fracture mechanics. It explains important topics including Griffith theory of brittle crack propagation and its Irwin and Orowan modification, calculation of theoretical cohesive strength of materials through an atomic model and analytical determination of crack tip stress field. This book covers MATLAB programs for calculating fatigue life under variable amplitude cyclic loading. The experimental measurements of fracture toughness parameters KIC, JIC and crack opening displacement (COD) are provided in the last chapter.




Dynamic Fracture


Book Description

Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture




Dynamic Fracture of Piezoelectric Materials


Book Description

Dynamic Fracture of Piezoelectric Materials focuses on the Boundary Integral Equation Method as an efficient computational tool. The presentation of the theoretical basis of piezoelectricity is followed by sections on fundamental solutions and the numerical realization of the boundary value problems. Two major parts of the book are devoted to the solution of problems in homogeneous and inhomogeneous solids. The book includes contributions on coupled electro-mechanical models, computational methods, its validation and the simulation results, which reveal different effects useful for engineering design and practice. The book is self-contained and well-illustrated, and it serves as a graduate-level textbook or as extra reading material for students and researchers.




Dynamic Fracture Mechanics


Book Description

Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.




Fracture Mechanics


Book Description

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results