Solar System Dynamics


Book Description

The Solar System is a complex and fascinating dynamical system. This is the first textbook to describe comprehensively the dynamical features of the Solar System and to provide students with all the mathematical tools and physical models they need to understand how it works. It is a benchmark publication in the field of planetary dynamics and destined to become a classic. Clearly written and well illustrated, Solar System Dynamics shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica® software package are provided. Solar System Dynamics provides an authoritative textbook for courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and non-linear dynamics.




Dynamics of Planetary Systems


Book Description

An introduction to celestial mechanics for advanced undergraduates, graduate students, and researchers new to the field Celestial mechanics—the study of the movement of planets, satellites, and smaller bodies such as comets—is one of the oldest subjects in the physical sciences. Since the mid-twentieth century, the field has experienced a renaissance due to advances in space flight, digital computing, numerical mathematics, nonlinear dynamics, and chaos theory, and the discovery of exoplanets. This modern, authoritative introduction to planetary system dynamics reflects these recent developments and discoveries and is suitable for advanced undergraduate and graduate students as well as researchers. The book treats both traditional subjects, such as the two-body and three-body problems, lunar theory, and Hamiltonian perturbation theory, as well as a diverse range of other topics, including chaos in the solar system, comet dynamics, extrasolar planets, planetesimal dynamics, resonances, tidal friction and disruption, and more. The book provides readers with all the core concepts, tools, and methods needed to conduct research in the subject. Provides an authoritative introduction that reflects recent advances in the field Topics treated include Andoyer variables, co-orbital satellites and quasi-satellites, Hill’s problem, the Milankovich equations, Colombo’s top and Cassini states, the Yarkovsky and YORP effects, orbit determination for extrasolar planets, and more More than 100 end-of-book problems elaborate on concepts not fully covered in the main text Appendixes summarize the necessary background material Suitable for advanced undergraduates and graduate students; some knowledge of Hamiltonian mechanics and methods of mathematical physics (vectors, matrices, special functions, etc.) required Solutions manual available on request for instructors who adopt the book for a course




Planets and Planetary Systems


Book Description

Planetary Science is an exciting, fast-moving, interdisciplinary field with courses taught in a wide range of departments, including astronomy, physics, chemistry, earth sciences and biology. Planets and Planetary Systems is a well-written, concise introductory textbook on the science of planets within our own and other solar systems. Keeping mathematics to a minimum, assuming only a rudimentary knowledge of calculus, the book begins with a description of the basic properties of the planets in our solar systems, and then moves on to compare them with what is known about planets in other solar systems. It continues by looking at the surfaces, interiors and atmospheres of the planets and then covers the dynamics and origin of planetary systems. The book closes with a look at the role of life in planetary systems. · An accessible, concise introduction to planets and planetary systems · Uses insights from all the disciplines underlying planetary science · Incorporates results from recent planetary space missions, such as Cassini to Saturn and a number of missions to Mars · Well illustrated throughout, including a colour plate section Planets and Planetary Systems is invaluable to students taking courses in planetary science across a wide range of disciplines and of interest to researchers and many keen amateur astronomers, needing an up-to-date introduction to this exciting subject.




Physics of the Solar System


Book Description

This volume covers most areas in the physics of the solar system, with special emphasis on gravitational dynamics; its gist is the rational, in particular mathematical, understanding of the main processes at work. Special stress is given to the variety of objects in the planetary system and their long-term evolution. The unique character of this book is its breadth and depth, which aims at bringing the reader to the threshold of original research; however, special chapters and introductory sections are included for the benefit of the beginner. The volume is generally suitable for post-graduate students and researchers in physics, especially in the field related to the solar system. A large amount of figures and diagrams is included, often compiled with real data.




New Developments in the Dynamics of Planetary Systems


Book Description

It is now a well-established tradition that every four years, at the end of winter, a group of 'celestial mechanicians' from all over the world gather in the Austrian Alps at the invitation of R. Dvorak. This time the colloquium was held at Badhofgastein from March 19 to March 25, 2000 and was devoted to the 'New Developments in the Dynamics of Planetary Systems'. The papers covered a large range of questions of current interest: t- oretical questions (resonances, KAM theory, transport, ... ) and questions about numerical tools (synthetic elements, indicators of chaos, ... ) were particularly well represented; of course planetary theories and Near Earth Objects were also quite popular. Three special lectures were delivered in honor of deceased colleagues whom, to our dismay, we will no longer meet at the 'Austrian Colloquia'. W. Jefferys delivered the Heinrich Eichhorn lecture on 'Statistics for the Twenty-first Century Astrometry', a topic on which Heinrich Eichhorn was a specialist. A. Roy delivered a lecture honoring Victor Szehebely on 'Lifting the Darkness: Science in the Third Millenium', in which in wove anecdotes and remembrances of Victor which moved the audience very much. A. Lemaitre spoke in honor of Michele Moons on 'Mech anism of Capture in External Resonance'. The end of her talk was devoted to a short and moving biography of Michele illustrated by many slides.




Dynamics of Planetary Systems


Book Description

Celestial mechanics--the study of the movement of planets, satellites, and smaller bodies such as comets--is one of the oldest subjects in the physical sciences. Since the mid-twentieth century, the field has experienced a renaissance due to advances in space flight, digital computing, numerical mathematics, nonlinear dynamics, and chaos theory, and the discovery of exoplanets. This modern, authoritative introduction to planetary system dynamics reflects these recent developments and discoveries and is suitable for advanced undergraduate and graduate students as well as researchers. The book treats both traditional subjects, such as the two-body and three-body problems, lunar theory, and Hamiltonian perturbation theory, as well as a diverse range of other topics, including chaos in the solar system, comet dynamics, extrasolar planets, planetesimal dynamics, resonances, tidal friction and disruption, and more. The book provides readers with all the core concepts, tools, and methods needed to conduct research in the subject.




Fundamental Planetary Science


Book Description

A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.




Topics in Gravitational Dynamics


Book Description

This set of lectures collects surveys of open problems in celestial dynamics and dynamical astronomy applied to solar, extra-solar and galactic systems. The discovery and thus the possibility to study many new extra-solar planetary systems have spurred new developments in the field and enabled the testing and enlargement of the domains of validity of theoretical predictions through the Nekhoroshev theorem.




Planetary Science


Book Description

Since the publication of the popular first edition, stellar and planetary scientists have produced numerous new observations, theories, and interpretations, including the "demotion" of our former ninth planet Pluto as a dwarf planet. Covering all of these new discoveries, Planetary Science: The Science of Planets around Stars, Second Edition explains the science associated with the planets, the stars they orbit, and the interactions between them. It examines the formation, evolution, and death of stars and the properties of the Sun that influence the planets of the Solar System. Along with more problems, this second edition adds new material and improves some analytical treatments. The book consists of two main components. For students unfamiliar with stellar properties or the overall structure of the Solar System, the first part gives a general picture of the system as a whole and the interrelationships of the bodies within it. It presents an overview of the nature of stars and the Solar System as well as important results obtained by scientific analysis. The second component is a set of 43 appendices describing the majority of the underlying science required to explain the main features of the Solar System. These appendices cover a variety of specialized topics, from mineralogy to the mechanical interactions of radiation and matter. End-of-chapter problems give students a quantitative understanding of stellar and solar system phenomena. The text shows how useful estimates of various quantities can be made even when characteristics of the system are not known with any precision. While the problems can be completed with a hand calculator, students are encouraged to use the Fortran computer programs provided on the book’s CRC Press web page. Avoiding excessive details, this textbook offers a comprehensive account of stellar and planetary topics. It is suitable for students from a range of disciplines, including astronomy, geology, and earth sciences. The book provides students with an understanding of the nature of the Solar System and the influences that govern its behavior, helping them develop an appreciation of the forces that can influence our planet in the future.




Astrophysics of Planet Formation


Book Description

Concise and self-contained, this textbook gives a graduate-level introduction to the physical processes that shape planetary systems, covering all stages of planet formation. Writing for readers with undergraduate backgrounds in physics, astronomy, and planetary science, Armitage begins with a description of the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, rocky, and giant planets, and concludes by describing the gravitational and gas dynamical evolution of planetary systems. He provides a self-contained account of the modern theory of planet formation and, for more advanced readers, carefully selected references to the research literature, noting areas where research is ongoing. The second edition has been thoroughly revised to include observational results from NASA's Kepler mission, ALMA observations and the JUNO mission to Jupiter, new theoretical ideas including pebble accretion, and an up-to-date understanding in areas such as disk evolution and planet migration.




Recent Books