Earthquake Hazard, Risk and Disasters


Book Description

Earthquake Hazard, Risk, and Disasters presents the latest scientific developments and reviews of research addressing seismic hazard and seismic risk, including causality rates, impacts on society, preparedness, insurance and mitigation. The current controversies in seismic hazard assessment and earthquake prediction are addressed from different points of view. Basic tools for understanding the seismic risk and to reduce it, like paleoseismology, remote sensing, and engineering are discussed.




Seismic Hazard and Risk Analysis


Book Description

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.




Earthquake Hazard in Lebanon


Book Description

This book presents a comprehensive treatment of earthquake hazards in Lebanon and its vicinity. A thorough review of the tectonics of the region is given alongside a re-assessment of the historical and instrumental earthquake records. Probabilistic seismic hazard analysis is undertaken and hazard maps are presented in terms of peak ground parameters as well as spectral ordinates (acceleration and displacement). Owing to their significance to the economy of Lebanon, the three cities of Beirut, Sidon and Tripoli are subjected to site-specific earthquake hazard assessment. The maps provided are the best available estimates of seismic hazards in Lebanon and are recommended for use in risk assessment. Also, the basis and framework for similar studies in the Levant are given. The rigorous and pragmatic approach adopted by the authors renders the book accessible to design engineers and researchers alike.




Seismic Hazard and Risk Analysis


Book Description

This is the twenty-sixth volume in the Earthquake Engineering Research Institute's series, Connections: The EERI Oral History Series. EERI began this series to preserve the recollections of some of those who have had pioneering careers in the field of earthquake engineering.Mete Sozen (1932-2018) is the Karl H. Kettelhut Distinguished Professor Emeritus of Civil Engineering at Purdue University, Indiana, United States.Besides his academic interest in the development of design codes for concrete structures, Sozen is notable for his contributions to the official post 9/11-government studies of terrorist attacks, including the Oklahoma City bombing, and The Pentagon. Sozen also led a team that created an engineering simulation of American Airlines Flight 11 crashing into the North Tower of the World Trade Center. The computer-animated visualizations were made entirely from the simulation data. He was elected to the National Academy of Engineering in 1977 for contributions to understanding the structural design and behavior of buildings and bridges subjected to earthquake motions.Sozen received his undergraduate education at Robert College (Turkey, 1951) and his master's (1952) and doctoral degrees (1957) from the University of Illinois at Urbana-Champaign.




Earthquake Hazard, Risk and Disasters


Book Description

Earthquake Hazard, Risk, and Disasters presents the latest scientific developments and reviews of research addressing seismic hazard and seismic risk, including causality rates, impacts on society, preparedness, insurance and mitigation. The current controversies in seismic hazard assessment and earthquake prediction are addressed from different points of view. Basic tools for understanding the seismic risk and to reduce it, like paleoseismology, remote sensing, and engineering are discussed. - Contains contributions from expert seismologists, geologists, engineers and geophysicists selected by a world-renowned editorial board - Presents the latest research on seismic hazard and risk assessment, economic impacts, fatality rates, and earthquake preparedness and mitigation - Includes numerous illustrations, maps, diagrams and tables addressing earthquake risk reduction - Features new insights and reviews of earthquake prediction, forecasting and early warning, as well as basic tools to deal with earthquake risk




Earthquake Hazard Assessment


Book Description

This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.




Earthquake Hazard Assessment


Book Description

This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.




Earthquake Hazard Impact and Urban Planning


Book Description

​The classical field dealing with earthquakes is called “earthquake engineering” and considered to be a branch of structural engineering. In projects dealing with strategies for earthquake risk mitigation, urban planning approaches are often neglected. Today interventions are needed on a city, rather than a building, scale. This work deals with the impact of earthquakes, including also a broader view on multihazards in urban areas. Uniquely among other works in the field, particular importance is given to urban planning issues, in conservation of heritage and emergency management. Multicriteria decision making and broad participation of those affected by disasters are included.




Seismic Hazard and Risk Assessment


Book Description

This book contains the best contributions presented during the 6th National Conference on Earthquake Engineering and the 2nd National Conference on Earthquake Engineering and Seismology - 6CNIS & 2CNISS, that took place on June 14-17, 2017 in Bucharest - Romania, at the Romanian Academy and Technical University of Civil Engineering of Bucharest. The book offers an updated overview of seismic hazard and risk assessment activities, with an emphasis on recent developments in Romania, a very challenging case study because of its peculiar intermediate-depth seismicity and evolutive code-compliant building stock. Moreover, the book collects input of renowned scientists and professionals from Germany, Greece, Italy, Japan, Netherlands, Portugal, Romania, Spain, Turkey and United Kingdom.The content of the book focuses on seismicity of Romania, geotechnical earthquake engineering, structural analysis and seismic design regulations, innovative solutions for seismic protection of building structures, seismic risk evaluation, resilience-based assessment of structures and management of emergency situations. The sub-chapters consist of the best papers of 6CNIS & 2CNISS selected by the International Advisory and Scientific Committees. The book is targeted at researchers and experts in seismic hazard and risk, evaluation and rehabilitation of buildings and structures, insurers and re-insurers, and decision makers in the field of emergency situations and recovery activities.




Disaster Deferred


Book Description

Coinciding with the 200th anniversary of the New Madrid earthquakes of 1811-12, Disaster Deferred revisits these earthquakes, the legends that have grown around them, and the predictions of doom that have followed in their wake. Seth Stein clearly explains the techniques seismologists use to study Midwestern quakes and estimate their danger.