Electric and Magnetic Fields


Book Description




Handbook of MRI Pulse Sequences


Book Description

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems




The World of Physics 2nd Edition


Book Description

A clear and easy to follow textbook including material on forces, machines, motion, properties of matter, electronics and energy, problem-solving investigations and practice in experimental design.




Eddy Current Approximation of Maxwell Equations


Book Description

This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.




Numerical Computation of Electric and Magnetic Fields


Book Description

For well over a decade, the numerical approach to field computation has been gaining progressively greater importance. Analytical methods of field compu tation are, at best, unable to accommodate the very wide variety of configura tions in which fields must be computed. On the other hand, numerical methods can accommodate many practical configurations that analytical methods cannot. With the advent of high-speed digital computers, numerical field computations have finally become practical. However, in order to implement numerical methods of field computation, we need algorithms, numerical methods, and mathematical tools that are largely quite different from those that have been traditionally used with analytical methods. Many of these algorithms have, in fact, been presented in the large number of papers that have been published on this subject in the last two decades. And to some of those who are already experienced in the art of numerical field computations, these papers, in addition to their own original work, are enough to give them the knowledge that they need to perform practical numerical field computations.







Numerical Modelling of Eddy Currents


Book Description

Eddy currents appear in electromagnetic devices whenever a magnetic field varies through a conductor. They are often undesirable and represent a power loss. This text looks at numerical modelling methods for the prediction of eddy currents.




Vibration


Book Description

Maintaining the outstanding features and practical approach that led the bestselling first edition to become a standard textbook in engineering classrooms worldwide, Clarence de Silva's Vibration: Fundamentals and Practice, Second Edition remains a solid instructional tool for modeling, analyzing, simulating, measuring, monitoring, testing, controlling, and designing for vibration in engineering systems. It condenses the author's distinguished and extensive experience into an easy-to-use, highly practical text that prepares students for real problems in a variety of engineering fields. What's New in the Second Edition? A new chapter on human response to vibration, with practical considerations Expanded and updated material on vibration monitoring and diagnosis Enhanced section on vibration control, updated with the latest techniques and methodologies New worked examples and end-of-chapter problems. Incorporates software tools, including LabVIEWTM, SIMULINKĀ®, MATLABĀ®, the LabVIEW Sound and Vibration Toolbox, and the MATLAB Control Systems Toolbox Enhanced worked examples and new solutions using MATLAB and SIMULINK The new chapter on human response to vibration examines representation of vibration detection and perception by humans as well as specifications and regulatory guidelines for human vibration environments. Remaining an indispensable text for advanced undergraduate and graduate students, Vibration: Fundamentals and Practice, Second Edition builds a unique and in-depth understanding of vibration on a sound framework of practical tools and applications.




Alternating Currents


Book Description