Effect of Ionic Strength (salinity) and PH (acidity) on Geochemical Water-rock Interactions During Hydraulic Fracturing in the Frontier Formation of the Powder Basin, Wyoming


Book Description

The ability to reuse produced waters in hydraulic fracturing operations will not only conserve freshwater resources but potentially enhance production in some cases as well. This study assesses the effects of pH and ionic strength on fluid-rock interactions associated with using produced water for hydraulic fracturing. Frontier Formation core samples (consisting of interbedded shales and sandstones) used in experiments were collected from the Hornbuckle 1-11H well within the Powder River Basin of Wyoming. A simplified fracturing fluid was constructed based on information retrieved from the Hornbuckle 1-11H completion report and includes HCl, methanol, a clay stabilizer, and an iron chelating agent. Make up water for the fracturing fluid was geochemically modeled to represent formation waters that naturally exist in the Frontier Formation. Experiments react core samples and hydraulic fracturing fluids at ionic strengths of ~ 0.015, ~ 0.15, and ~ 1.5 molal as well as near-neutral and acidic pH at 115°C (~240°F) and 35 MPa (~5000 psi) for ~ 28 days to replicate in-situ reservoir conditions. Results show significant changes in the aqueous concentrations of calcium, strontium, potassium, magnesium, lithium, and silica. Acidic pH as well as high ionic strength begins to dissolve carbonates and feldspars. Aqueous potassium concentrations increase with higher ionic strengths and shows no effect from pH, potentially due to sodium substitution in illite clays. Magnesium trends are similar to potassium, however significant decreases in aqueous magnesium occur in near-neutral pH conditions. Relative increases in aqueous silica are fastest in acidic pH conditions and unaffected by initial ionic strength. Combining these findings to already existing research has the potential to optimize well production while simultaneously conserving freshwater resources in the future.




Geochemical Evaluation of Fluid-rock Interactions Between Alkaline Hydraulic Fracturing Fluid and Niobrara Formation, Denver-Julesburg Basin, Colorado, USA


Book Description

Unconventional petroleum reservoirs have become important resources for energy production. Flowback fluid produced from hydraulically fractured reservoirs is typically analyzed after hydraulic fracturing fluid is injected into the reservoir and the well has been shut-in for weeks. However, geochemical reactions between reservoir rock and injected fluid are known to occur on the order of a few days, a timeframe less than the typical shut-in period of a hydraulically fractured reservoir. Two laboratory experiments were performed to analyze the potential for geochemical reactions between reservoir rock and injected fracturing fluid within this timescale. Core from the Niobrara Formation (chalk and marl), a productive unconventional reservoir in the Denver-Julesburg Basin, Colorado, USA, and alkaline hydraulic fracturing fluid (pH=10.7) were reacted at reservoir conditions 113 °C (235 °F), 27.5 MPa (3988 psi)) for ~35 days. Temporal evolution of aqueous geochemistry and thermodynamic analysis of both experiments indicates 1) rapid pH neutralization by carbonate mineral reactions; 2) non-stoichiometric dissolution of Mg-calcite and formation of secondary calcite; 3) aluminosilicate mineral dissolution in the first 100 hours; and 4) secondary clay mineralization after 100 hours. Dissolution of barite is also indicated for both experiments, however, termination of the marl experiment produced barite scaling. Secondary precipitation of carbonate and silicate minerals is inferred in fluid chemistry but not observed using standard scanning microscopy and x-ray diffraction. The absence of secondary mineralization indicates limited reaction between alkaline hydraulic fracturing fluid and Niobrara Formation chalk and marl and thus little impact of fluid-rock interactions to extraction of fluids from unconventional reservoirs.




Water-rock Interaction with Fracture Surfaces in a Unconventional Reservoir


Book Description

Hydraulic fracturing of unconventional reservoirs in the Powder River Basin in Wyoming and Montana is a growing source of oil and gas production. However, shale and tight-oil reservoirs in the region have high rates of decline in production compared to conventional oil and gas extraction, severely limiting well life. The full reasons for these high decline rates are unclear and have been attributed to a number of causes, including porosity decrease from fines migration. Recent field and experimental studies have shown that water-rock interaction with hydraulic fracturing fluid can cause mineral precipitation in the reservoir subsurface. Experimental studies into water-rock interaction also suggest that reservoirs are sensitive to changes in mineral surface area and to oil adhering to the mineral grains. This study tests the potential effect on water-rock interaction of removing residual oil from unconventional reservoir rock at reservoir conditions as found in the Powder River Basin in Wyoming. Rock samples from the Parkman Sandstone in the Powder River Basin, Wyoming were combined with synthesized formation water at in-situ reservoir conditions and reacted for ~35 days to approach steady-state. A simulated hydraulic fracturing fluid was then injected and reactions proceeded for another ~35 days. Fluid samples were collected throughout the experiment. One experiments uses rocks chemically processed to remove residual oil (low-residual oil, or LRO) and one uses rocks that retain residual oil (high-residual oil, or HRO). All experiments use 0.5–1 cm rock cubes to emulate the interface between fractures and the rock matrix. Analyzed chemistry results from aqueous samples collected during the experiments indicate water-rock interaction with both carbonates and clay minerals. Observation of rock recovered from the experiments shows changes to mineralogy visible in microscope or SEM. Fluid results suggest that unconventional reservoir rock with less residual oil at the mineral face is more prone to carbonate dissolution than reservoir rock with residual oil at the fracture face. Little evidence of precipitation or dissolution was observed on the recovered rock after experiments; however, water-rock interaction at the timescales of these experiments is not likely to cause significant changes to in-situ reservoir porosity or permeability. The water-silicate interaction trend suggests that the fluid chemistry may favor smectite or other clay precipitation at timescales beyond those represented in the experiments.




The Effects of Induced Hydraulic Fracturing on the Environment


Book Description

Hydraulic fracturing, or "fracking" as it is commonly known, refers to the practice of using liquids at very high pressures to fragment rock, thereby allowing natural gas to be harvested. This process increases energy resources but also has some negative environmental impacts as well. This book looks at the environmental impact. The first section looks at fracturing and the water supply, the second section looks at ecosystems and wildlife, while the final section examines the possible effects on human ecosystems and human health.




Review of Geochemical and Geo-Mechanical Impact of Clay-Fluid Interactions Relevant to Hydraulic Fracturing


Book Description

Shale rocks are an integral part of petroleum systems. Though, originally viewed primarily as source and seal rocks, introduction of horizontal drilling and hydraulic fracturing technologies have essentially redefined the role of shale rocks in unconventional reservoirs. In the geological setting, the deposition, formation and transformation of sedimentary rocks are characterised by interactions between their clay components and formation fluids at subsurface elevated temperatures and pressures. The main driving forces in evolution of any sedimentary rock formation are geochemistry (chemistry of solids and fluids) and geomechanics (earth stresses). During oil and gas production, clay minerals are exposed to engineered fluids, which initiate further reactions with significant implications. Application of hydraulic fracturing in shale formations also means exposure and reaction between shale clay minerals and hydraulic fracturing fluids. This chapter presents an overview of currently available published literature on interactions between formation clay minerals and fluids in the subsurface. The overview is particularly focused on the geochemical and geomechanical impacts of interactions between formation clays and hydraulic fracturing fluids, with the goal to identify knowledge gaps and new research questions on the subject.




Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources


Book Description

Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. Responsible development of America's oil and gas resources offers important economic, energy security, and environmental benefits. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US House of Representatives requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research under its Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources. The purpose of the study is to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. Scientists are focusing primarily on hydraulic fracturing of shale formations to extract natural gas, with some study of other oil-and gas-producing formations, including tight sands, and coalbeds. The EPA has designed the scope of the research around five stages of the hydraulic fracturing water cycle. Each stage of the cycle is associated with a primary research question: Water acquisition: What are the possible impacts of large volume water withdrawals from ground and surface waters on drinking water resources? Chemical mixing: What are the possible impacts of hydraulic fracturing fluid surface spills on or near well pads on drinking water resources? Well injection: What are the possible impacts of the injection and fracturing process on drinking water resources? Flowback and produced water: What are the possible impacts of flowback and produced water (collectively referred to as "hydraulic fracturing wastewater") surface spills on or near well pads on drinking water resources? Wastewater treatment and waste disposal: What are the possible impacts of inadequate treatment of hydraulic fracturing wastewater on drinking water resources? This report describes 18 research projects underway to answer these research questions and presents the progress made as of September 2012 for each of the projects. Information presented as part of this report cannot be used to draw conclusions about potential impacts to drinking water resources from hydraulic fracturing. The research projects are organized according to five different types of research activities: analysis of existing data, scenario evaluations, laboratory studies, toxicity assessments, and case studies.







Hydraulic Fracturing for Oil and Gas


Book Description

"This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources. The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe."-- Source other than Library of Congress.




Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources


Book Description

Natural gas plays a key role in our nation's clean energy future. Recent advances in drilling technologies-including horizontal drilling and hydraulic fracturing-have made vast reserves of natural gas economically recoverable in the US. Responsible development of America's oil and gas resources offers important economic, energy security, and environmental benefits. Hydraulic fracturing is a well stimulation technique used to maximize production of oil and natural gas in unconventional reservoirs, such as shale, coalbeds, and tight sands. During hydraulic fracturing, specially engineered fluids containing chemical additives and proppant are pumped under high pressure into the well to create and hold open fractures in the formation. These fractures increase the exposed surface area of the rock in the formation and, in turn, stimulate the flow of natural gas or oil to the wellbore. As the use of hydraulic fracturing has increased, so have concerns about its potential environmental and human health impacts. Many concerns about hydraulic fracturing center on potential risks to drinking water resources, although other issues have been raised. In response to public concern, the US Congress directed the US Environmental Protection Agency (EPA) to conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. This study plan represents an important milestone in responding to the direction from Congress. EPA is committed to conducting a study that uses the best available science, independent sources of information, and a transparent, peer-reviewed process that will ensure the validity and accuracy of the results. The Agency will work in consultation with other federal agencies, state and interstate regulatory agencies, industry, non-governmental organizations, and others in the private and public sector in carrying out this study. Stakeholder outreach as the study is being conducted will continue to be a hallmark of our efforts, just as it was during the development of this study plan. The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identify the driving factors that affect the severity and frequency of any impacts. Based on the increasing development of shale gas resources in the US, and the comments EPA received from stakeholders, this study emphasizes hydraulic fracturing in shale formations. Portions of the research, however, are also intended to provide information on hydraulic fracturing in coalbed methane and tight sand reservoirs. The scope of the research includes the hydraulic fracturing water use lifecycle, which is a subset of the greater hydrologic cycle. For the purposes of this study, the hydraulic fracturing water lifecycle begins with water acquisition from surface or ground water and ends with discharge into surface waters or injection into deep wells. Specifically, the water lifecycle for hydraulic fracturing consists of water acquisition, chemical mixing, well injection, flowback and produced water (collectively referred to as "hydraulic fracturing wastewater"), and wastewater treatment and waste disposal.




Hydraulic Fracturing for Oil and Gas


Book Description

This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources. The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe.