Protein-Solvent Interactions


Book Description

This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.




Modern Physical Organic Chemistry


Book Description

In additionto covering thoroughly the core areas of physical organic chemistry -structure and mechanism - this book will escortthe practitioner of organic chemistry into a field that has been thoroughlyupdated.




Linkage Thermodynamics of Macromolecular Interactions


Book Description

This volume commemorates the 50th anniversary of the appearance in Volume 4 in 1948 of Dr. Jeffries Wyman's famous paper in which he "laid down" the foundations of linkage thermodynamics. Experts in this area contribute articles on the state-of-the-art of this important field and on new developments of the original theory. Among the topics covered in this volume are electrostatic contributions to molecular free energies in solution; site-specific analysis of mutational effects in proteins; allosteric transitions of the acetylcholine receptor; and deciphering the molecular code of hemoglobin allostery.




Protein-Ligand Interactions


Book Description

Proteins are the cell’s workers, their messengers and overseers. In these roles, proteins specifically bind small molecules, nucleic acid and other protein partners. Cellular systems are closely regulated and biologically significant changes in populations of particular protein complexes correspond to very small variations of their thermodynamics or kinetics of reaction. Interfering with the interactions of proteins is the dominant strategy in the development of new pharmaceuticals. Protein Ligand Interactions: Methods and Applications, Second Edition provides a complete introduction to common and emerging procedures for characterizing the interactions of individual proteins. From the initial discovery of natural substrates or potential drug leads, to the detailed quantitative understanding of the mechanism of interaction, all stages of the research process are covered with a focus on those techniques that are, or are anticipated to become, widely accessible and performable with mainstream commercial instrumentation. Written in the highly successful Methods in Molecular Biology series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Ligand Interactions: Methods and Applications, Second Edition serves as an ideal guide for researchers new to the field of biophysical characterization of protein interactions – whether they are beginning graduate students or experts in allied areas of molecular cell biology, microbiology, pharmacology, medicinal chemistry or structural biology.




Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation


Book Description

In this unique book, experts describe practices applicable to the large-scale processing of biotechnological products. Beginning with processing and bulk storage preservation techniques, the book provides strategies for improving efficiency of process campaigns of multiple products and manufacturing facilities for such processing techniques. Large-scale chromatography for the purification of biomolecules in manufacturing and lyophilization of protein pharmaceuticals are discussed. Includes a case study on blow-fill-seal processing technology and a chapter on economic and cost factors for bioprocess engineering.




Thermodynamics of Solutions


Book Description

This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the “signature” of the present book. First, these papers are concerned with “difficult” or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from “normal” conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned “difficult” systems.




Amyloid, Prions, and Other Protein Aggregates


Book Description

This volume includes a core of methodologies to attack the unique experimental problems presented by protein misassembly. Emphasis is on human biology applications, the area in which there is the most interest, in which most of the work has already been done, and in which there is the best evidence for the structural sophisitication of the protein aggregates.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.




Structural Genomics and Drug Discovery


Book Description

Structural Genomics and Drug Discovery: Methods and Protocols focuses on high throughput structure determination methods and how they can be applied to lay the groundwork for structure aided drug discovery. The methods and protocols that are described can be applied in any laboratory interested in using detailed structural information to advance the initial stages of drug discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Structural Genomics and Drug Discovery: Methods and Protocols seeks to aid scientists in the further study into structural genomics approach as an efficient initial step toward drug discovery and the methods described will be useful to anyone interested in moving in this direction.




Handbook of Molecular Biotechnology


Book Description

With a history that likely dates back to the dawn of human civilization more than 10,000 years ago, and a record that includes the domestication and selective breeding of plants and animals, the harnessing of fermentation process for bread, cheese, and brewage production, and the development of vaccines against infectious diseases, biotechnology has acquired a molecular focus during the 20th century, particularly following the resolution of DNA double helix in 1953, and the publication of DNA cloning protocol in 1973, and transformed our concepts and practices in disease diagnosis, treatment and prevention, pharmaceutical and industrial manufacturing, animal and plant industry, and food processing. While molecular biotechnology offers unlimited opportunities for improving human health and well-being, animal welfare, agricultural innovation and environmental conservation, a dearth of high quality books that have the clarity of laboratory manuals without distractive procedural details and the thoroughness of well-conversed textbooks appears to dampen the enthusiasm of aspiring students. In attempt to fill this glaring gap, Handbook of Molecular Biotechnology includes four sections, with the first three presenting in-depth coverage on DNA, RNA and protein technologies, and the fourth highlighting their utility in biotechnology. Recognizing the importance of logical reasoning and experimental verification over direct observation and simple description in biotechnological research and development, the Introduction provides pertinent discussions on key strategies (i.e., be first, be better, and be different), effective thinking (lateral, parallel, causal, reverse, and random), and experimental execution, which have proven invaluable in helping advance research projects, evaluate and prepare research reports, and enhance other scientific endeavors. Key features Presents state-of-the-art reviews on DNA, RNA and protein technologies and their biotechnological applications Discusses key strategies, effective thinking, and experimental execution for scientific research and development Fills the gap left by detailed-ridden laboratory manuals and insight-lacking standard textbooks Includes expert contributions from international scientists at the forefront of molecular biotechnology research and development Written by international scientists at the forefront of molecular biotechnology research and development, chapters in this volume cover the histories, principles, and applications of individual techniques/technologies, and constitute stand-alone, yet interlinked lectures that strive to educate as well as to entertain. Besides providing an informative textbook for tertiary students in molecular biotechnology and related fields, this volume serves as an indispensable roadmap for novice scientists in their efforts to acquire innovative skills and establish solid track records in molecular biotechnology, and offers a contemporary reference for scholars, educators, and policymakers wishing to keep in touch with recent developments in molecular biotechnology.




Protein-Ligand Interactions


Book Description

The lock-and-key principle formulated by Emil Fischer as early as the end of the 19th century has still not lost any of its significance for the life sciences. The basic aspects of ligand-protein interaction may be summarized under the term 'molecular recognition' and concern the specificity as well as stability of ligand binding. Molecular recognition is thus a central topic in the development of active substances, since stability and specificity determine whether a substance can be used as a drug. Nowadays, computer-aided prediction and intelligent molecular design make a large contribution to the constant search for, e. g., improved enzyme inhibitors, and new concepts such as that of pharmacophores are being developed. An up-to-date presentation of an eternally young topic, this book is an indispensable information source for chemists, biochemists and pharmacologists dealing with the binding of ligands to proteins.