Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 36 (thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 36 reports theses submitted in 1991, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.




Effective Properties of Heterogeneous Materials


Book Description

The book contains state-of the-art reviews in the area of effective properties of heterogeneous materials - the classical field at interface of materials science and solid mechanics. The primary focus is on thermo-mechanical properties, materials science applications, as well as computational aspects and new opportunities provided by rapidly increasing computer powers. The reviews are at the level that is appropriate for a substantial community of researchers working in this field, both at universities and in the industry, and to graduate students. The book can be used as supplementary reading to graduate level courses.




The Theory of Composites


Book Description

Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.




Continuum Micromechanics


Book Description

This book presents the most recent progress of fundamental nature made in the new developed field of micromechanics: transformation field analysis, variational bounds for nonlinear composites, higher-order gradients in micromechanical damage models, dynamics of composites, pattern based variational bounds.




Random Heterogeneous Materials


Book Description

This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.





Book Description




Fractals, Scaling and Growth Far from Equilibrium


Book Description

A comprehensive, 1998 account of the practical aspects and pitfalls of the applications of fractal modelling in the physical sciences.




Mechanics of Heterogeneous Materials


Book Description

This book is published on dedication of Prof. Dr. Igor Sevostianov who passed away in 2021. He was a great Russian-American scientist who made significant contributions in the field of mechanics of heterogeneous media. This book contains research papers from his friends and colleagues in this research field.




Inelastic Deformation of Composite Materials


Book Description

Polymer composites were introduced for the aerospace industry as light, strong, stiff materials, and adopted by the construction and automobile industries, among others. Meanwhile, composite materials have been introduced to fulfill the uses that these conventional materials could not, such as in extreme environments. The research for new composites includes not only new polymer systems, but metals, ceramics and intermetallic systems as well. This volume contains a selection of recent work by leading researchers in micromechanics on the topics of prediction of overall properties of elastic, perfectly bonded systems, problems associated with inelastic deformation of the phase, debonding at interfaces and growth of distributed damage. Many familiar aspects of mechanical behavior, such as fatigue, fracture, strength and buckling, etc. have been reexamined and adapted for these new systems.