Diagnostic Nuclear Medicine


Book Description

In the development of many medical technologies the beginning is characterised by an emphasis on the basic scientific principles of the technology and the optimisa tion of the functional aspects of the technology. As a technology matures there is a tendency for the underlying principles to be forgotten as the dinical applications begin to develop and the focus moves to an understanding of the dinical applica tion. This maturity brings with it new challenges for those involved in the use of the technology. An acceptance of the methodology may lead to a scaling back of the ba sic training of staff into the fundamentals of the techniques and lead to a lack of questioning as to those issues which lead to the optimisation in dinical applications. This lack of basic training may ultimately lead to a stifling of research and develop ment of the technology as a whole as trained staff becomes a scarce commodity. Nudear medicine is no exception to this development cyde. As a medical special ty the discipline has matured. The basic imaging technology has become more reli able in everyday use requiring less input from scientific staff. Clinical procedures have become protocols which are often followed without due understanding of the basic principles underlying the imaging procedure. This is clearly demonstrated when new radiopharmaceuticals are introduced into the market place.




Computers in Nuclear Medicine


Book Description

Kai H. Lee, PhD This book helps you acquire a basic understanding of how computers work and the processing techniques used to obtain diagnostic information for radionuclide images. The easy-to-use workbook format makes this a great educational tool.




A History of Radionuclide Studies in the UK


Book Description

The British Nuclear Medicine Society celebrates its 50th Anniversary with this booklet, which reflects the research of many of the pioneers in the use of radionuclides for the diagnosis and therapy of human disease. Since 1949 there have been remarkable advances in radionuclide techniques and imaging equipment: from the first devices “home-made” in the many physics departments throughout the UK, to the sophisticated multimodality imagers now in everyday use in Nuclear Medicine. The BNMS has been instrumental in promoting the use of radionuclide techniques in the investigation of pathology by supporting and providing education, research and guidelines on the optimum use of radiation to help patients. The future of Nuclear Medicine is bright, thanks to improved imaging resolution, new radiopharmaceuticals, and new diagnostic and therapeutic techniques and procedures.




Physics and Radiobiology of Nuclear Medicine


Book Description

A basic knowledge of physics, instrumentation, and radiobiology is essential for nuclear physicians and technologists in the practice of nuclear medicine. The nuclear medicine specialty has matured over the past three decades to the extent that there is an increasing need for certification of physicians and technologists to practice nuclear medicine. Each year many medical residents take the American Board of Nuclear Medicine examination and the Ameri can Board of Radiology examination with special competency in Nuclear Radiology, and many technologists take the Registry examination in Nuclear Medicine. All these tests include a good portion of physics, instrumenta tion, and radiobiology in nuclear medicine. It is mandatory that radiology residents pass the physics section of the American Board of Radiology examination. This book is primarily addressed to this audience. In addition, anyone in terested in the basics of physics, instrumentation, and radiobiology in nuclear medicine should find this book useful.




The Essential Physics of Medical Imaging


Book Description

This renowned work is derived from the authors' acclaimed national review course (“Physics of Medical Imaging") at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams.




Quantitative Analysis in Nuclear Medicine Imaging


Book Description

This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine instrumentation and dual-modality imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. A brief overview of each chapter is provided below. Chapter 1 presents a general overview of nuclear medicine imaging physics and instrumentation including planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Nowadays, patients’ diagnosis and therapy is rarely done without the use of imaging technology. As such, imaging considerations are incorporated in almost every chapter of the book. The development of dual-modality - aging systems is an emerging research field, which is addressed in chapter 2.




The Pathophysiologic Basis of Nuclear Medicine


Book Description

This book, now in its third edition, aims to promote a deeper understanding of the scientific and clinical basis of nuclear medicine and the new directions in medical imaging. The new edition has been revised and updated to reflect recent changes and to ensure that the contents are in line with likely future directions. The book starts by providing essential information on general pathophysiology, cell structure and cell biology as well as the mechanisms of radiopharmaceutical localization in different tissues and cells. The clinical applications of nuclear medicine are then presented in a series of chapters that cover every major organ system and relate the basic knowledge of anatomy, physiology and pathology to the clinical utilization of various scintigraphic modalities. The therapeutic applications of nuclear medicine are discussed in a separate chapter, and the final chapter is devoted to the biologic effects of ionizing radiations, including radiation from medical procedures.




Nuclear Medicine Instrumentation


Book Description

"Written at the technologist level, Nuclear Medicine Instrumentation, Second Edition focuses on instruments essential to the practice of nuclear medicine. Covering everything from Geiger counters to positron emission tomography systems, this text provides students with an understanding of the practical aspects of these instruments and their uses in nuclear medicine. Nuclear Medicine Instrumentation is made up of four parts: Small Instruments Gamma Camera Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET) By concentrating on the operation of these instruments and the potential pitfalls that they are subject to, students will be better prepared for what they may encounter during their career. The Second Edition includes revised content and updated data throughout as well as a new chapter on Magnetic Resonance Imaging and Its Application to Nuclear Medicine and a new Appendix on Laboratory Accreditation"--




Advancing Nuclear Medicine Through Innovation


Book Description

Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.