Fluid Interfaces


Book Description

Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.




Proteins in Solution and at Interfaces


Book Description

Explores new applications emerging from our latest understanding of proteins in solution and at interfaces Proteins in solution and at interfaces increasingly serve as the starting point for exciting new applications, from biomimetic materials to nanoparticle patterning. This book surveys the state of the science in the field, offering investigators a current understanding of the characteristics of proteins in solution and at interfaces as well as the techniques used to study these characteristics. Moreover, the authors explore many of the new and emerging applications that have resulted from the most recent studies. Topics include protein and protein aggregate structure; computational and experimental techniques to study protein structure, aggregation, and adsorption; proteins in non-standard conditions; and applications in biotechnology. Proteins in Solution and at Interfaces is divided into two parts: Part One introduces concepts as well as theoretical and experimental techniques that are used to study protein systems, including X-ray crystallography, nuclear magnetic resonance, small angle scattering, and spectroscopic methods Part Two examines current and emerging applications, including nanomaterials, natural fibrous proteins, and biomolecular thermodynamics The book's twenty-three chapters have been contributed by leading experts in the field. These contributions are based on a thorough review of the latest peer-reviewed findings as well as the authors' own research experience. Chapters begin with a discussion of core concepts and then gradually build in complexity, concluding with a forecast of future developments. Readers will not only gain a current understanding of proteins in solution and at interfaces, but also will discover how theoretical and technical developments in the field can be translated into new applications in material design, genetic engineering, personalized medicine, drug delivery, biosensors, and biotechnology.




The Vroman Effect


Book Description

The development of specific antibodies as probes and detectors for adsorbed proteins by Dr. Leo Vroman and co-workers in the 1960s and 1970s confirmed his earlier observations and suspicions that blood protein adsorption involved a hierarchical series of collision, adsorption, and exchange processes. These observations and concepts were confirmed by other scientists and came to be known as 'the Vroman effect'. The core concept of the Vroman effect admits many approaches and over-reaches complex and not fully resolved questions of enzymology, transport phenomena, the statistical mechanics of protein conformation, longrange forces in liquids, and surface physics. This volume contains the presentations from the symposium which was held in honour of the 75th birhday of Dr. Leo Vroman, in Gouda, The Netherlands, and deals with various aspects of the Vroman effect.




BIOTECHNOLOGY - Volume IV


Book Description

This Encyclopedia of Biotechnology is a component of the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Biotechnology draws on the pure biological sciences (genetics, animal cell culture, molecular biology, microbiology, biochemistry, embryology, cell biology) and in many instances is also dependent on knowledge and methods from outside the sphere of biology (chemical engineering, bioprocess engineering, information technology, biorobotics). This 15-volume set contains several chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It carries state-of-the-art knowledge in the field and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.




Proteins at Solid-Liquid Interfaces


Book Description

This book opens with a description of fundamental aspects of protein adsorption to surfaces, a phenomenon that plays a key role in biotechnological applications, especially at solid-liquid interfaces. Presented here are methods for studying adsorption kinetics and conformational changes such as optical waveguide lightmode spectroscopy (OWLS). Also described are sensitive bench techniques for measuring the orientation and structure of proteins at solid-liquid interfaces, including total internal reflection ellipsometry (TIRE), dual polarisation interferometry (DPI) and time of flight - secondary ion mass spectrometry (TOF–SIMS). A model study of fibronectin at polymer surfaces is included, as are studies using microporous membranes and textiles with immobilized enzymes for large-scale applications. Biocompatibility, anti-fouling properties and surface modification to modulate the adsorption and activity of biomolecules are among the other topics addressed in this invaluable book.




Biodegradable Systems in Tissue Engineering and Regenerative Medicine


Book Description

Conventional materials technology has yielded clear improvements in regenerative medicine. Ideally, however, a replacement material should mimic the living tissue mechanically, chemically, biologically and functionally. The use of tissue-engineered products based on novel biodegradable polymeric systems will lead to dramatic improvements in health




Proteins at Liquid Interfaces


Book Description

The interfacial behaviour of surfactants and proteins, and their mixtures, is of importance in a wide range of areas such as food technology, detergency, cosmetics, coating processes, biomedicine, pharmacy and biotechnology. Methods such as surface and interfacial tension measurements and interfacial dilation and shear rheology characterise the relationships between these interfacial properties and the complex behaviour of foams and emulsions is established. Recently-developed experimental techniques, such as FRAP which enable the measurement of molecular mobility in adsorption layers, are covered in this volume. The development of theories to describe the thermodynamic surface state or the exchange of matter for proteins and protein/surfactant mixtures is also described.Features of this book:• Reflects the state-of-the-art research and application of protein interfacial layers rather than a snapshot of only some recent developments.• Emphasis is placed on experimental details as well as recent theoretical developments.• New experimental techniques applied to protein interfacial layers are described, such as FRAP or ADSA, or rheological methods to determine the mechanical behaviour of protein-modified interfaces.• A large number of practical applications, ranging from emulsions relevant in food technology for medical problems such as lung surfactants, to the characterisation of foams intrinsic to beer and champagne production.The book will be of interest to research and university institutes dedicated to interfacial studies in chemistry, biology, pharmacy, medicine and food engineering. Industrial departments for research and technology in food industry, pharmacy, medicine and brewery research will also find this volume of value.




Theoretical Microfluidics


Book Description

Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.




Physical Chemistry of Biological Interfaces


Book Description

An introduction to the most important fundamental concepts of physicochemical interface science and a description of experimental techniques and applications of surface science in relation to biological systems. It explores artificial assemblies of lipids, proteins and polysaccharides that perform novel functions that living systems cannot duplicate.