Boundary Layer and Flow Control


Book Description

Boundary Layer and Flow Control: Its Principles and Application, Volume 2 focuses on the layer of fluid in the immediate area of a bounding surface where the effects of viscosity are substantial. This book is organized into two main topics—boundary layer control for low drag, and shock-induced separation and its prevention by design and boundary layer control. It specifically discusses the nature of transition, effect of two-dimensional and isolated roughness on laminar flow, and progress in the design of low drag aerofoils. The onset of separation effects for aerofoils and wings, shock-induced separation for laminar boundary layers, and shock-induced separation for laminar boundary layers are also deliberated. This volume is recommended to physicists and specialists interested in boundary layer and flow control.




NASA Technical Note


Book Description




Wartime Report


Book Description







Report


Book Description




Report


Book Description







Effects of Specific Types of Surface Roughness on Boundary-layer Transition


Book Description

Summary: Tests were conducted with two typical low-drag airfoils of 90-inch chord to determine the effects of surface projections, grooves, and sanding scratches on boundary-layer transition. The Reynolds number at which a spanwise row of cylindrical projections would cause premature transition was determined for a range of Reynolds number from approximately 3 x 106 to 10 x 106. Data were obtained for projections of various sizes and chordwise locations on both low-drag airfoils. The results were analyzed on the assumption that the critical airfoil Reynolds number for a given projection was a function only of the local-flow conditions around the projection. This assumption neglected possible effects of tunnel turbulence, pressure gradient, boundary-layer Reynolds number, and the original extent of the laminar flow. The data correlated on the basis of this assumption within a range of critical airfoil Reynolds number of ±0.5 x 106 and within a range of projection height of ±0.002 inch. The tests of surface grooves and sanding scratches indicated that, for the range of Reynolds number investigated, the laminar boundary layer was much less sensitive to surface grooves and sanding scratches than to projections above the surface.




Effects of Specific Types of Surface Roughness on Boundary-layer Transition


Book Description

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.