Limits, Modeling and Design of High-Speed Permanent Magnet Machines


Book Description

There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched. The thesis focuses on analysis and design of high-speed PM machines and uses a practical design of a high-speed spindle drive as a test case. Phenomena, both mechanical and electromagnetic, that take precedence in high-speed permanent magnet machines are identified and systematized. The thesis identifies inherent speed limits of permanent magnet machines and correlates those limits with the basic parameters of the machines. The analytical expression of the limiting quantities does not only impose solid constraints on the machine design, but also creates the way for design optimization leading to the maximum mechanical and/or electromagnetic utilization of the machine. The models and electric-drive concepts developed in the thesis are evaluated in a practical setup.




Permanent Magnet Synchronous Motor Drives for Gearless Traction Elevators


Book Description

This book focuses on the control strategies for gearless permanent magnet synchronous motor traction elevators. Both basic principles and experimental evaluation have been addressed. This is achieved by providing in-depth study on a number of major topics such as speed detection at low-speed operation, starting torque strategy based on dichotomy and staircase methods, fuzzy self-tuning method, MPC and ADRC, etc. The comprehensive and systematic treatment of control strategies for cost-effective gearless PMSM traction elevators and practical issues are the major features of the book, which is particularly suited for readers who are interested to learn the control strategies for cost-effective gearless PMSM traction elevators. The book benefits researchers, engineers, and graduate students in the fields of ac motor drives and control strategies for cost-effective gearless PMSM traction elevators, etc.




Permanent Magnet Motor Technology


Book Description

The importance of permanent magnet (PM) motor technology and its impact on electromechanical drives has grown exponentially since the publication of the bestselling second edition. The PM brushless motor market has grown considerably faster than the overall motion control market. This rapid growth makes it essential for electrical and electromechanical engineers and students to stay up-to-date on developments in modern electrical motors and drives, including their control, simulation, and CAD. Reflecting innovations in the development of PM motors for electromechanical drives, Permanent Magnet Motor Technology: Design and Applications, Third Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This edition supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors, including the finite element approach, and explains how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter facilitate a lucid understanding of motor operations and characteristics. This 3rd edition of a bestselling reference has been thoroughly revised to include: Chapters on high speed motors and micromotors Advances in permanent magnet motor technology Additional numerical examples and illustrations An increased effort to bridge the gap between theory and industrial applications Modified research results The growing global trend toward energy conservation makes it quite possible that the era of the PM brushless motor drive is just around the corner. This reference book will give engineers, researchers, and graduate-level students the comprehensive understanding required to develop the breakthroughs that will push this exciting technology to the forefront.




Control Strategies of Permanent Magnet Synchronous Motor Drive for Electric Vehicles


Book Description

To reduce the emissions of greenhouse gasses and maintain environmental sustainability, electric vehicles play a vital role in a modern energy-efficient environment. Permanent magnet synchronous motors (PMSMs) are widely employed in electric vehicle technology due to their high dynamic response, better torque-speed characteristics, noiseless operation, high power density, high efficiency and power factor as compared to other conventional motor drives. This book demonstrates the development of various control strategies and illustrates the dynamic performance intensification of a PMSM drive. To ensure the faster dynamic behaviour and flexibility in control under various operating conditions, the performance of a PMSM drive has been explained. Finally, control strategies have been executed through mathematical modelling and illustration of several case studies for optimal operation. Features: Introduces performance indicators in a self-controlled PMSM machine to justify the dynamic behaviour Discusses comparative performance study and optimization of the drive performance Provides a detailed comparative performance analysis between classical and fuzzy logic controllers in a PMSM drive Includes illustrations and case studies using mathematical modelling and real-time test results Discusses the state of the art in solar-powered energy-efficient PMSM drives with various issues This book is aimed at researchers, graduate students and libraries in electrical engineering with specialization in electric vehicles.




Automation, Control and Energy Efficiency in Complex Systems


Book Description

This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.




High Performance AC Drives


Book Description

Variable speed is one of the important requirements in most of the electric drives. Earlier dc motors were the only drives that were used in industries requiring - eration over a wide range of speed with step less variation, or requiring fine ac- racy of speed control. Such drives are known as high performance drives. AC - tors because of being highly coupled non-linear devices can not provide fast dynamic response with normal controls. However, recently, because of ready availability of power electronic devices, and digital signal processors ac motors are beginning to be used for high performance drives. Field oriented control or vector control has made a fundamental change with regard to dynamic perfo- ance of ac machines. Vector control makes it possible to control induction or s- chronous motor in a manner similar to control scheme used for the separately - cited dc motor. Recent advances in artificial intelligence techniques have also contributed in the improvement in performance of electric drives. This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the impro- ment of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on sensorless and direct torque control of electric drives as up-to date references in these topics are provided.




Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives


Book Description

The book focuses on position sensorless control for PMSM drives, addressing both basic principles and experimental evaluation. It provides an in-depth study on a number of major topics, such as model-based sensorless control, saliency-based sensorless control, position estimation error ripple elimination and acoustic noise reduction. Offering a comprehensive and systematic overview of position sensorless control and practical issues it is particularly suitable for readers interested in the sensorless control techniques for PMSM drives. The book is also a valuable resource for researchers, engineers, and graduate students in fields of ac motor drives and sensorless control.




Control of Permanent Magnet Synchronous Motors


Book Description

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.




Permanent Magnet Synchronous and Brushless DC Motor Drives


Book Description

Despite two decades of massive strides in research and development on control strategies and their subsequent implementation, most books on permanent magnet motor drives still focus primarily on motor design, providing only elementary coverage of control and converters. Addressing that gap with information that has largely been disseminated only in journals and at conferences, Permanent Magnet Synchronous and Brushless DC Motor Drives is a long-awaited comprehensive overview of power electronic converters for permanent magnet synchronous machines and control strategies for variable-speed operation. It introduces machines, power devices, inverters, and control, and addresses modeling, implementation, control strategies, and flux weakening operations, as well as parameter sensitivity, and rotor position sensorless control. Suitable for both industrial and academic audiences, this book also covers the simulation, low cost inverter topologies, and commutation torque ripple of PM brushless DC motor drives. Simulation of the motor drives system is illustrated with MATLAB® codes in the text. This book is divided into three parts—fundamentals of PM synchronous and brushless dc machines, power devices, inverters; PM synchronous motor drives, and brushless dc motor drives. With regard to the power electronics associated with these drive systems, the author: Explores use of the standard three-phase bridge inverter for driving the machine, power factor correction, and inverter control Introduces space vector modulation step by step and contrasts with PWM Details dead time effects in the inverter, and its compensation Discusses new power converter topologies being considered for low-cost drive systems in PM brushless DC motor drives This reference is dedicated exclusively to PM ac machines, with a timely emphasis on control and standard, and low-cost converter topologies. Widely used for teaching at the doctoral level and for industrial audiences both in the U.S. and abroad, it will be a welcome addition to any engineer’s library.