Electric Circuits and Networks


Book Description

Electric Circuits and Networks is designed to serve as a textbook for a two-semester undergraduate course on basic electric circuits and networks. The book builds on the subject from its basic principles. Spread over seventeen chapters, the book can be taught with varying degree of emphasis on its six subsections based on the course requirement. Written in a student-friendly manner, its narrative style places adequate stress on the principles that govern the behaviour of electric circuits and networks.




Electric Circuit Analysis


Book Description

Electric Circuit Analysis is designed for undergraduate course on basic electric circuits. The book builds on the subject from its basic principles. Spread over fourteen chapters, the book can be taught with varying degree of emphasis based on the course requirement. Written in a student-friendly manner, its narrative style places adequate stress on the principles that govern the behaviour of electric circuits.




Electrical Networks


Book Description

A detailed introduction to modern network theory. Includes computer models of semiconductor devices and circuits, and several computer modeling techniques. Brings together many useful techniques and basic concepts that have previously been scattered throughout other texts and professional journals. Establishes a strong analytical foundation for the analysis, design, and optimization of active and passive linear electrical networks, unifying classical theory and electronic circuit design. Features rigorous theoretical developments and design-oriented examples and exercises.




Advanced Electric Circuits


Book Description

Advanced Electric Circuits focuses on circuit analysis, including amplification, oscillations, capacitance, and circuit elements. The publication first offers information on the symbolic method of analysis, network theorems, bridge networks, and tuned circuits and filters. The text then takes a look at polyphase circuits, non-sinusoidal and transient excitation, and valves as circuit elements. Discussions focus on amplification, resistance-capacitance amplifiers, feedback, negative feedback amplifiers, cathode follower, low-power oscillations, and practical design of feedback circuits. The manuscript elaborates on transistors as circuit elements and elementary transmission-line analysis. Topics include ideal small-signal current amplifiers, small signal performance of the common emitter amplifier, comparative table of symbols, and typical examination questions. The publication is a dependable reference for students and readers interested in electric circuits.




ELECTRICAL CIRCUIT ANALYSIS


Book Description

The book, now in its Second Edition, presents the concepts of electrical circuits with easy-to-understand approach based on classroom experience of the authors. It deals with the fundamentals of electric circuits, their components and the mathematical tools used to represent and analyze electrical circuits. This text guides students to analyze and build simple electric circuits. The presentation is very simple to facilitate self-study to the students. A better way to understand the various aspects of electrical circuits is to solve many problems. Keeping this in mind, a large number of solved and unsolved problems have been included. The chapters are arranged logically in a proper sequence so that successive topics build upon earlier topics. Each chapter is supported with necessary illustrations. It serves as a textbook for undergraduate engineering students of multiple disciplines for a course on ‘circuit theory’ or ‘electrical circuit analysis’ offered by major technical universities across the country. SALIENT FEATURES • Difficult topics such as transients, network theorems, two-port networks are presented in a simple manner with numerous examples. • Short questions with answers are provided at the end of every chapter to help the students to understand the basic laws and theorems. • Annotations are given at appropriate places to ensure that the students get the gist of the subject matter clearly. NEW TO THE SECOND EDITION • Incorporates several new solved examples for better understanding of the subject • Includes objective type questions with answers at the end of the chapters • Provides an appendix on ‘Laplace Transforms’




Electrical Networks


Book Description

Electrical Networks focuses on the principles, methodologies, practices, and approaches involved in electrical networks, including transformers, polarity, Zobel networks, and Fourier series. The book first elaborates on d.c. currents and voltages and varying currents and voltages. Discussions focus on voltage and current sources, energy and power, voltage and current division, star-delta transformation, direction and polarity, periodical quantities, capacitors and inductors, and energy stored in capacitors and inductors. The manuscript then takes a look at some properties of networks and magnetic coupled inductors. Topics include equivalent circuits for magnetic coupled coils, voltage and the current transformer, mutual induction, impedance transformation, current direction, voltage polarity and the mode of winding, polar diagrams, resonance, and Zobel networks. The publication examines networks containing switches, complex frequency, and Fourier series. Considerations include frequency spectrum, finite Fourier series, capacitor discharges over a resistor, natural oscillations, and discontinuity. The monograph is a valuable source of information for electricians and researchers interested in electrical networks.




Concepts in Electric Circuits


Book Description




Electric Circuit Theory


Book Description

Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical, electronics, and control engineering students or any other individuals who require a substantial understanding of the physical aspects of electrical engineering.







Electrical Circuit Theory and Technology


Book Description

Electrical Circuit Theory and Technology is a fully comprehensive text for courses in electrical and electronic principles, circuit theory and electrical technology. The coverage takes students from the fundamentals of the subject, to the completion of a first year degree level course. Thus, this book is ideal for students studying engineering for the first time, and is also suitable for pre-degree vocational courses, especially where progression to higher levels of study is likely. John Bird's approach, based on 700 worked examples supported by over 1000 problems (including answers), is ideal for students of a wide range of abilities, and can be worked through at the student's own pace. Theory is kept to a minimum, placing a firm emphasis on problem-solving skills, and making this a thoroughly practical introduction to these core subjects in the electrical and electronic engineering curriculum. This revised edition includes new material on transients and laplace transforms, with the content carefully matched to typical undergraduate modules. Free Tutor Support Material including full worked solutions to the assessment papers featured in the book will be available at http://textbooks.elsevier.com/. Material is only available to lecturers who have adopted the text as an essential purchase. In order to obtain your password to access the material please follow the guidelines in the book.