Electric Grid Reliability and Interface with Nuclear Power Plants


Book Description

This publication describes the characteristics of the electrical grid system that are required for the connection and successful operation of a nuclear power plant, as well as the characteristics of a nuclear power plant that are significant for the design and operation of the electrical grid system. It addresses the issues to be considered when a nuclear power plant is being planned and describes the information exchange necessary between the developer of a nuclear power plant and the organization responsible for the electrical grid. The particular issue of a large nuclear unit connected with a small system is also discussed. A new topic introduced in this publication is the need for cyber security of the grid system near the nuclear power plant. Several case studies of Member States experience in developing new nuclear units and about grid events during operation are included.




Electrical Systems for Nuclear Power Plants


Book Description

Covers all aspects of electrical systems for nuclear power plants written by an authority in the field Based on author Omar Mazzoni's notes for a graduate level course he taught in Electrical Engineering, this book discusses all aspects of electrical systems for nuclear power plants, making reference to IEEE nuclear standards and regulatory documents. It covers such important topics as the requirements for equipment qualification, acceptance testing, periodic surveillance, and operational issues. It also provides excellent guidance for students in understanding the basis of nuclear plant electrical systems, the industry standards that are applicable, and the Nuclear Regulatory Commission's rules for designing and operating nuclear plants. Electrical Systems for Nuclear Power Plants offers in-depth chapters covering: elements of a power system; special regulations and requirements; unique requirements of a Class 1E power system; nuclear plants containment electrical penetration assemblies; on-site emergency AC sources; on-site emergency DC sources; protective relaying; interface of the nuclear plant with the grid; station blackout (SBO) issues and regulations; review of electric power calculations; equipment aging and decommissioning; and electrical and control systems inspections. This valuable resource: Evaluates industry standards and their relationship to federal regulations Discusses Class 1E equipment, emergency generation, the single failure criterion, plant life, and plant inspection Includes exercise problems for each chapter Electrical Systems for Nuclear Power Plants is an ideal text for instructors and students in electrical power courses, as well as for engineers active in operating nuclear power plants.




Enhancing the Resilience of the Nation's Electricity System


Book Description

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.




Nuclear Reactor Technology Assessment for Near Term Deployment


Book Description

This publication explains how a reactor technology assessment is performed and how the process and its results enable decision making for nuclear power planning and implementation at each of its phases. The methodology has been revised to incorporate developments since the first edition in 2013 and includes feedback from comprehensive training workshops offered for the last six years to Member States introducing nuclear power programmes. The aim of this publication is to help newcomer Member States to understand the complexity involved in the selection of the most suitable reactor technology as well as obligations and responsibilities integral to an unbiased assessment. The publication can also be used by countries that already have nuclear power programmes, to assist in their selection of the next nuclear power plant.




Electrical Systems for Nuclear Power Plants


Book Description

Covers all aspects of electrical systems for nuclear power plants written by an authority in the field Based on author Omar Mazzoni's notes for a graduate level course he taught in Electrical Engineering, this book discusses all aspects of electrical systems for nuclear power plants, making reference to IEEE nuclear standards and regulatory documents. It covers such important topics as the requirements for equipment qualification, acceptance testing, periodic surveillance, and operational issues. It also provides excellent guidance for students in understanding the basis of nuclear plant electrical systems, the industry standards that are applicable, and the Nuclear Regulatory Commission's rules for designing and operating nuclear plants. Electrical Systems for Nuclear Power Plants offers in-depth chapters covering: elements of a power system; special regulations and requirements; unique requirements of a Class 1E power system; nuclear plants containment electrical penetration assemblies; on-site emergency AC sources; on-site emergency DC sources; protective relaying; interface of the nuclear plant with the grid; station blackout (SBO) issues and regulations; review of electric power calculations; equipment aging and decommissioning; and electrical and control systems inspections. This valuable resource: Evaluates industry standards and their relationship to federal regulations Discusses Class 1E equipment, emergency generation, the single failure criterion, plant life, and plant inspection Includes exercise problems for each chapter Electrical Systems for Nuclear Power Plants is an ideal text for instructors and students in electrical power courses, as well as for engineers active in operating nuclear power plants.




Management of Nuclear Power Plant Projects


Book Description

Member States intending to introduce a nuclear power programme will need to pass through several phases during the implementation. Experience shows that careful planning of the objectives, roles, responsibilities, interfaces and tasks to be carried out in different phases of a nuclear project is important for success. This publication presents a harmonized approach that may be used to structure the owner/operator management system and establish and manage nuclear projects and their development activities irrespective of the adopted approach. It has been developed from shared management practices and consolidated experiences provided by nuclear project management specialists through a series of workshops and working groups organized by the IAEA. The resultant publication presents a useful framework for the management of nuclear projects from initiation to closeout and captures international best practices.




The Power of Change


Book Description

Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.




Safety and Reliability: Methodology and Applications


Book Description

Within the last fifty years the performance requirements for technical objects and systems were supplemented with: customer expectations (quality), abilities to prevent the loss of the object properties in operation time (reliability and maintainability), protection against the effects of undesirable events (safety and security) and the ability to







Managing Siting Activities for Nuclear Power Plants


Book Description

Member States continue to request guidance on introducing nuclear power to their power production strategy. This revised publication presents developments in managing siting activities since the 2012 edition. It provides the updated methodology and framework to assist Member States in site identification, selection, evaluation and licensing, and discusses aspects including nuclear safety and security, technology and engineering, economics and cost, land use planning and preparation, socioeconomic impacts and involvement of stakeholders. The intended users include decision makers, senior managers and other technical specialists involved in siting and site evaluation. It is also relevant for Member States seeking to expand existing nuclear power programmes.