Electrical Degradation and Breakdown in Polymers


Book Description

The book is in five parts: Part I introduces the physical and chemical structure of polymers and their breakdown; Part II reviews electrical degradation in polymers, and Part III reviews conduction and deterministic breakdown in solids. Part IV discusses the stochastic nature of break-down from empirical and modelling viewpoints, and Part V indicates practical implications and strategies for engineers. Much of the discussion applies to non-crystalline materials generally.




Polyimide for Electronic and Electrical Engineering Applications


Book Description

Polyimide is one of the most efficient polymers in many industries for its excellent thermal, electrical, mechanical, and chemical properties as well as its easy processability. In the electronic and electrical engineering industries, polyimide has widely been used for decades thanks to its very good dielectric and insulating properties at the high electric field and at high temperatures of around 200°C in long term-service. Moreover, polyimide appears essential for the development of new electronic devices where further considerations such as high power density, integration, higher temperature, thermal conduction management, energy storage, reliability, or flexibility are required in order to sustain the growing global electrical energy consumption. This book gathers interdisciplinary chapters on polyimide in various topics through state-of-the-art and original ongoing research.




Thermal Degradation of Polymeric Materials


Book Description

Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. This book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.




Properties of Polymers


Book Description

Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students.




Advances in Polymer Materials and Technology


Book Description

This book covers recent advancements in the field of polymer science and technology. Frontiers areas, such as polymers based on bio-sources, polymer based ferroelectrics, polymer nanocomposites for capacitors, food packaging and electronic packaging, piezoelectric sensors, polymers from renewable resources, superhydrophobic materials and electrospinning are topics of discussion. The contributors to this book are expert researchers from various academic institutes and industries from around the world.




Engineered Materials Handbook, Desk Edition


Book Description

A comprehensive reference on the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials. Section 1, General Information and Data, contains information applicable both to polymers and to ceramics and glasses. It includes an illustrated glossary, a collection of engineering tables and data, and a guide to materials selection. Sections 2 through 7 focus on polymeric materials--plastics, elastomers, polymer-matrix composites, adhesives, and sealants--with the information largely updated and expanded from the first three volumes of the Engineered Materials Handbook. Ceramics and glasses are covered in Sections 8 through 12, also with updated and expanded information. Annotation copyright by Book News, Inc., Portland, OR




Electrical Power Cable Engineering


Book Description

Fully updated, Electrical Power Cable Engineering, Third Edition again concentrates on the remarkably complex design, application, and preparation methods required to terminate and splice cables. This latest addition to the CRC Press Power Engineering series covers cutting-edge methods for design, manufacture, installation, operation, and maintenance of reliable power cable systems. It is based largely on feedback from experienced university lecturers who have taught courses on these very concepts. The book emphasizes methods to optimize vital design and installation of power cables used in the interrelated fields of electrical, mechanical, and, to some extent, civil engineering. An in-depth exploration of power cable characteristics and applications, it illustrates the many factors that can hinder real-world cable performance. Content focuses on low and medium voltages, considering that these are used for the majority of cables in service globally. This edition also details techniques for testing shielded power cable systems in the field, demonstrating how conductor material size and design depend on ampacity, voltage regulation, and other factors. Covering everything from manufacturing to testing, this resource will benefit: Cable engineers and technicians (working for investor-owned utilities, rural electric cooperatives, and industrial manufacturers) who need to improve their oversight and understanding of power cables Universities that offer electrical power courses Professionals who must master new power cable terminology, engineering characteristics, and background information that will aid them in their decision making responsibilities The author is a life fellow of the IEEE and one of the original developers of industry standards for cables and accessories. To simplify field fundamentals and techniques for less experienced readers, his book contains new, updated, and expanded chapters and an extensive glossary, in addition to useful references, tables, equations, and photographs. More experienced engineers will appreciate the book’s invaluable updates on the emerging materials, products, and concepts driving their dynamic field.




Smart Polymer Nanocomposites


Book Description

Smart Polymer Nanocomposites: Design, Synthesis, Functionalization, Properties, and Applications brings together the latest research on synthetic methods and surface functionalization of polymers and polymer composites for advanced applications. Sections cover the basic principles of advanced polymer nanocomposites, including morphology, materials, characterization, and copolymerization, provide in-depth coverage of synthetic methods, facilitating the preparation of polymeric nanoparticles with the required properties, examine the morphologies of polymer nanocomposites and stimuli-responsive surfaces, and focus on cutting-edge approaches to tailoring polymeric nanocomposites according to the requirements. The book's final chapters focus on smart polymer nanocomposites for specific advanced applications, including high-temperature environments, bone tissue regeneration, biomedicine, wastewater treatment, dielectric and energy storage, chiral separation, food packaging, sensing, and drug delivery. This is a valuable resource for researchers and advanced students in polymer science, composite science, nanotechnology, and materials science, as well as those approaching the area from a range of other disciplines, including industry R&D. - Covers morphology, architectures, polymer materials, characterization, and polymerization methodologies for polymer nanocomposites - Provides novel techniques for the design, synthesis and surface tailoring of polymer nanoparticles to achieve required properties - Explores state-of-the-art applications in high temperature environments, biomedicine, environment, sensing, energy storage and food packaging




Dielectric Materials for Electrical Engineering


Book Description

The object of this book is to provide a comprehensive reference source for the numerous scientific communities (engineers, researchers, students, etc.) in various disciplines which require detailed information in the field of dielectric materials. Part 1 focuses on physical properties, electrical ageing, and modeling - including topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and end of life (EOL) models, and dielectric experimental characterization. Part 2 examines applications of specific relevance to dielectric materials: insulating oils for transformers, electro-rheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.




Polymer Nanocomposites


Book Description

This book focuses on the fundamental principles and recent progress in the field of electrical and thermal properties of polymer nanocomposites. The physical and chemical natures determining the electrical and thermal properties of polymer nanocomposites are discussed in detail. The authors describe the range of traditional and emerging polymer nanocomposites from nanoparticle and polymer composites to novel nanostructure based polymer nanocomposites. They include novel properties and potential applications, such as high-k, low-k, high thermal conductivity, antistatic, high voltage insulation, electric stress control, and thermal energy conversion among others.