Reliability and Ecological Aspects of Photovoltaic Modules


Book Description

Photovoltaic (PV) solar energy is expected to be the world's largest source of electricity in the future. To enhance the long-term reliability of PV modules, a thorough understanding of failure mechanisms is of vital importance. In addition, it is important to address the potential downsides to this technology. These include the hazardous chemicals needed for manufacturing solar cells, especially for thin-film technologies, and the large number of PV modules disposed of at the end of their lifecycles. This book discusses the reliability and environmental aspects of PV modules.







Reliability of Power Electronics Converters for Solar Photovoltaic Applications


Book Description

A hands-on, case study-backed reference of control strategies, fault classification mechanisms, and reliability analysis methods for PV modules, power electronic converters, and grid-connected PV systems. Written by an international team of researchers with excellent backgrounds in academia and industry.




Clean Electricity From Photovoltaics


Book Description

Photovoltaic cells provide clean, reversible electrical power from the sun. Made from semiconductors, they are durable, silent in operation and free of polluting emissions. In this book, experts from all sectors of the PV community — materials scientists, physicists, production engineers, economists and environmentalists — give their critical appraisals of where the technology is now and what its prospects are./a




Photovoltaic Module Reliability


Book Description

Provides practical guidance on the latest quality assurance and accelerated stress test methods for improved long-term performance prediction of PV modules This book has been written from a historical perspective to guide readers through how the PV industry learned what the failure and degradation modes of PV modules were, how accelerated tests were developed to cause the same failures and degradations in the laboratory, and then how these tests were used as tools to guide the design and fabrication of reliable and long-life modules. Photovoltaic Module Reliability starts with a brief history of photovoltaics, discussing some of the different types of materials and devices used for commercial solar cells. It then goes on to offer chapters on: Module Failure Modes; Development of Accelerated Stress Tests; Qualification Testing; and Failure Analysis Tools. Next, it examines the use of quality management systems to manufacture PV modules. Subsequent chapters cover the PVQAT Effort; the Conformity Assessment and IECRE; and Predicting PV Module Service Life. The book finishes with a look at what the future holds for PV. A comprehensive treatment of current photovoltaic (PV) technology reliability and necessary improvement to become a significant part of the electric utility supply system Well documented with experimental and practical cases throughout, enhancing relevance to both scientific community and industry Timely contribution to the harmonization of methodological aspects of PV reliability evaluation with test procedures implemented to certify PV module quality Written by a leading international authority in PV module reliability Photovoltaic Module Reliability is an excellent book for anyone interested in PV module reliability, including those working directly on PV module and system reliability and preparing to purchase modules for deployment.




Future of solar photovoltaic


Book Description

This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.







Solar PV Power


Book Description

Solar PV Power: Design, Manufacturing and Applications from Sand to Systems details developments in the solar cell manufacturing process, including information from system design straight through to the entire value chain of Solar PV Manufacturing. In addition, the book includes aspects of ground mounted grid connected solar PV systems and optimization for solar PV plants, economic analyses, and reliability and performance. The advances and processes of solar product technology and reliability, along with the performance of solar PV plants and operational and maintenance aspects with advance diagnostic techniques are also presented, making this an ideal resource. With rapid change in the manufacturing process, it is crucial for solar cells and solar PV modules to adapt to new developments in solar products, especially with regard to reliability, financial aspects and performance. - Includes detailed solar panel module assembly and analysis - Offers new concepts for solar PV system design that are presented alongside field related issues and examples - Saves time and resources by collecting all pieces of information needed by engineers in the same text




Fundamentals of Solar Cell Design


Book Description

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.