Electrochemical Sensors, Biosensors and their Biomedical Applications


Book Description

This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future.This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. - Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors - Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples - Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors




Nanobiosensors


Book Description

Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. - Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection - Provides application methods and techniques for research analysis for bacteriological detection and food testing - Presents studies using analytical tools to improve food safety and quality analysis




Electrochemical Nano/Bio Sensors 2


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Electrochemical Nano/Bio Sensors 2¿, held during the 217th meeting of The Electrochemical Society, in Vancouver, Canada, from April 25 to 30, 2010.




Electrochemical Biosensors


Book Description

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy




Nanobioelectrochemistry


Book Description

Nanobioelectrochemistry covers the modern aspects of bioelectrochemistry, nanoscience and materials science. The combination of nanostructured materials and biological molecules enables the development of biodevices capable to detect specific substances. Furthermore, by using the bioelectrochemistry approach, the interaction between bio-systems and nanostructured materials can be studied at the molecular level, where several mechanisms of molecular behavior are elucidate from redox reactions. The combination of biological molecules and novel nanomaterials components is of great importance in the process of developing new nanoscale devices for future biological, medical and electronic applications. This book describes some of the different electrochemical techniques that can be used to study new strategies for patterning electrode surfaces with enzymes, organelles, cells and biomimetic systems. Also, it focuses on how enzymes and microorganisms can be used as biological catalysts in fuel cells for green power generation. By bringing together these different aspects of nanobioelectrochemistry, this book provides a valuable source of information for many students and scientists.




Nanomaterials for Biosensors


Book Description

Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used




Electrochemical DNA Biosensors


Book Description

This book focuses on the basic electrochemical applications of DNA in various areas, from basic principles to the most recent discoveries. The book comprises theoretical and experimental analysis of various properties of nucleic acids, research methods, and some promising applications. The topics discussed in the book include electrochemical detection of DNA hybridization based on latex/gold nanoparticle and nanotubes; nanomaterial-based electrochemical DNA detection; electrochemical detection of microorganism-based DNA biosensors; gold nanoparticle-based electrochemical DNA biosensors; electrochemical detection of the aptamer-target interaction; nanoparticle-induced catalysis for DNA biosensing; basic terms regarding electrochemical DNA (nucleic acids) biosensors; screen-printed electrodes for electrochemical DNA detection; application of field-effect transistors to label free electrical DNA biosensor arrays; and electrochemical detection of nucleic acids using branched DNA amplifiers.




Nucleic Acid Biosensors for Environmental Pollution Monitoring


Book Description

This book discusses recent advances in the use of nucleic acid based biosensors and related bioanalytical assays for environmental monitoring.




Nanobiosensors


Book Description

Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research * Goes to a wide scientific and industry audience Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.




Impedance Spectroscopy


Book Description

The Essential Reference for the Field, Featuring Protocols, Analysis, Fundamentals, and the Latest Advances Impedance Spectroscopy: Theory, Experiment, and Applications provides a comprehensive reference for graduate students, researchers, and engineers working in electrochemistry, physical chemistry, and physics. Covering both fundamentals concepts and practical applications, this unique reference provides a level of understanding that allows immediate use of impedance spectroscopy methods. Step-by-step experiment protocols with analysis guidance lend immediate relevance to general principles, while extensive figures and equations aid in the understanding of complex concepts. Detailed discussion includes the best measurement methods and identifying sources of error, and theoretical considerations for modeling, equivalent circuits, and equations in the complex domain are provided for most subjects under investigation. Written by a team of expert contributors, this book provides a clear understanding of impedance spectroscopy in general as well as the essential skills needed to use it in specific applications. Extensively updated to reflect the field’s latest advances, this new Third Edition: Incorporates the latest research, and provides coverage of new areas in which impedance spectroscopy is gaining importance Discusses the application of impedance spectroscopy to viscoelastic rubbery materials and biological systems Explores impedance spectroscopy applications in electrochemistry, semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemical power sources Examines both the theoretical and practical aspects, and discusses when impedance spectroscopy is and is not the appropriate solution to an analysis problem Researchers and engineers will find value in the immediate practicality, while students will appreciate the hands-on approach to impedance spectroscopy methods. Retaining the reputation it has gained over years as a primary reference, Impedance Spectroscopy: Theory, Experiment, and Applications once again present a comprehensive reference reflecting the current state of the field.