Electrochemical Surface Science: Basics and Applications


Book Description

Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.




Physics of Surfaces and Interfaces


Book Description

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.




Electrochemical Supercapacitors


Book Description

The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago.




Electrochemical Biosensors


Book Description

Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more




Electroless Nickel Plating: Fundamentals to Applications


Book Description

Electroless Nickel Plating: Fundamentals to Applications provides a complete and actualized view of electroless nickel plating, thus greatly improving the accessibility of knowledge on the subject. It touches upon all aspects of electroless nickel, from the fundamentals (including thermodynamics of electroless plating, bath chemistry, and substrate preparation) to more applied areas of the field such as bath replenishment, composite coatings, post-treatments, polyalloys, graded and multilayer coatings, ultrasound assistance, applications, and properties. Contributed to by a variety of international authors to ensure different points of view and interests are addressed, this book stands as the first complete and updated state-of-the-art text on electroless nickel in the twenty-first century. It also serves as the first technical book with a strong emphasis on nickel-boron. It also focuses on environmental aspects. Including cutting-edge content presented sufficiently extensive to be directly useful to the practitioner, this book is aimed at materials scientists, metallurgists, and other professionals working with electroless nickel plating.




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions




An Introduction to the Physics and Electrochemistry of Semiconductors


Book Description

This book has been designed as a result of the author’s teaching experiences; students in the courses came from various disciplines and it was very difficult to prescribe a suitable textbook, not because there are no books on these topics, but because they are either too exhaustive or very elementary. This book, therefore, includes only relevant topics in the fundamentals of the physics of semiconductors and of electrochemistry needed for understanding the intricacy of the subject of photovoltaic solar cells and photoelectrochemical (PEC) solar cells. The book provides the basic concepts of semiconductors, p:n junctions, PEC solar cells, electrochemistry of semiconductors, and photochromism. Researchers, engineers and students engaged in researching/teaching PEC cells or knowledge of our sun, its energy, and its distribution to the earth will find essential topics such as the physics of semiconductors, the electrochemistry of semiconductors, p:n junctions, Schottky junctions, the concept of Fermi energy, and photochromism and its industrial applications. "The topics in this book are explained with clear illustration and indispensable terminology. It covers both fundamental and advanced topics in photoelectrochemistry and I believe that the content presented in this monograph will be a resource in the development of both academic and industrial research". —Professor Akira Fujishima, President, Tokyo University of Science, and Director, Photocatalysis International Research Center, Tokyo University of Science, Japan




Fundamentals of Electrocatalyst Materials and Interfacial Characterization


Book Description

This book addresses some essential topics in the science of energy converting devices emphasizing recent aspects of nano-derived materials in the application for the protection of the environment, storage, and energy conversion. The aim, therefore, is to provide the basic background knowledge. The electron transfer process and structure of the electric double layer and the interaction of species with surfaces and the interaction, reinforced by DFT theory for the current and incoming generation of fuel cell scientists to study the interaction of the catalytic centers with their supports. The chief focus of the chapters is on materials based on precious and non-precious centers for the hydrogen electrode, the oxygen electrode, energy storage, and in remediation applications, where the common issue is the rate-determining step in multi-electron charge transfer processes in electrocatalysis. These approaches are used in a large extent in science and technology, so that each chapter demonstrates the connection of electrochemistry, in addition to chemistry, with different areas, namely, surface science, biochemistry, chemical engineering, and chemical physics.




Corrosion Mechanisms in Theory and Practice, Third Edition


Book Description

Updated to include recent results from intensive worldwide research efforts in materials science, surface science, and corrosion science, Corrosion Mechanisms in Theory and Practice, Third Edition explores the latest advances in corrosion and protection mechanisms. It presents a detailed account of the chemical and electrochemical surface reactions that govern corrosion as well as the link between microscopic forces and macroscopic behavior. Revised and expanded, this edition includes four new chapters on corrosion fundamentals, the passivity of metals, high temperature corrosion, and the corrosion of aluminum alloys. The first half of the book covers basic aspects of corrosion, such as entry of hydrogen into metals, anodic dissolution, localized corrosion, stress corrosion cracking, and corrosion fatigue. Connecting the theoretical aspects of corrosion mechanisms to practical applications in industry, the second half of the text discusses corrosion inhibition, atmospheric corrosion, microbially induced corrosion, corrosion in nuclear systems, corrosion of microelectronic and magnetic data-storage devices, and organic coatings. With contributions from leading academic and industrial researchers, this bestselling book continues to provide a thorough understanding of corrosion mechanisms—helping you solve existing corrosion challenges and prevent future problems.




Applied Electrochemistry


Book Description

This book introduces the main aspects of modern applied electrochemistry. Starting with the basics of electrochemical kinetics, the authors address the chemistry and types of corrosion, principles of electro- and biocatalysis, electrodeposition and its applications in industrial processes. The book later discusses the electrochemistry and photoelectrochemistry of semiconductors and their applications in solar energy conversion and photocatalysis.